首页> 外文期刊>Future generation computer systems >Energy-efficient and traffic-aware service function chaining orchestration in multi-domain networks
【24h】

Energy-efficient and traffic-aware service function chaining orchestration in multi-domain networks

机译:多域网络中的高能效和流量感知服务功能链编排

获取原文
获取原文并翻译 | 示例

摘要

Service function chaining (SFC) provisioning is helpful not only for saving the capital expenditure (CAPEX) and operational expenditure (OPEX) of a network provider but also for reducing energy consumption in the substrate network. However, to the best of our knowledge, there has been little research on the problem of energy consumption for orchestrating online SFC requests in multi-domain networks. In this paper, we first formulate the problem of an energy-efficient online SFC request that is orchestrated across multiple clouds as an integer linear programming (ILP) model to find an optimal solution. Then, we analyze the complexity of this ILP model and prove that the problem is NP-hard. Additionally, we propose a low-complexity heuristic algorithm named energy-efficient online SFC request orchestration across multiple domains (EE-SFCO-MD) for near-optimally solving the mentioned problem. Finally, we conduct simulation experiments to evaluate the performance of our algorithm. Simulation results show that EE-SFCO-MD consumes less energy than existing approaches while the online SFC's requirements are met and the privacy of each cloud is effectively guaranteed. The low computational complexity of the heuristic approach makes it applicable for quickly responding to online SFC requests. (C) 2018 Elsevier B.V. All rights reserved.
机译:服务功能链(SFC)设置不仅有助于节省网络提供商的资本支出(CAPEX)和运营支出(OPEX),而且有助于减少基板网络中的能耗。但是,据我们所知,关于在多域网络中协调在线SFC请求的能源消耗问题的研究很少。在本文中,我们首先提出了一种高效的在线SFC请求的问题,该请求跨整数云规划为整数线性规划(ILP)模型,以寻找最佳解决方案。然后,我们分析了该ILP模型的复杂性,并证明了该问题是NP难的。此外,我们提出了一种低复杂度的启发式算法,称为跨多个域的节能在线SFC请求编排(EE-SFCO-MD),用于近乎最佳地解决上述问题。最后,我们进行仿真实验以评估算法的性能。仿真结果表明,在满足在线SFC要求并有效保证每个云的隐私性的同时,EE-SFCO-MD的能耗比现有方法要少。启发式方法的低计算复杂性使其适用于快速响应在线SFC请求。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号