首页> 外文期刊>Future generation computer systems >Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms
【24h】

Scheduling dynamic workloads in multi-tenant scientific workflow as a service platforms

机译:在多租户科学工作流程即服务平台中调度动态工作负载

获取原文
获取原文并翻译 | 示例

摘要

AbstractWith the advent of cloud computing and the availability of data collected from increasingly powerful scientific instruments, workflows have become a prevailing mean to achieve significant scientific advances at an increased pace. Emerging Workflow as a Service (WaaS) platforms offer scientists a simple, easily accessible, and cost-effective way of deploying their applications in the cloud at anytime and from anywhere. They are multi-tenant frameworks and are designed to manage the execution of a continuous workload of heterogeneous workflows. To achieve this, they leverage the compute, storage, and network resources offered by Infrastructure as a Service (IaaS) providers. Hence, at any given point in time, a WaaS platform should be capable of efficiently scheduling an arbitrarily large number of workflows with different characteristics and quality of service requirements. As a result, we propose a resource provisioning and scheduling strategy designed specifically for WaaS environments. The algorithm is scalable and dynamic to adapt to changes in the environment and workload. It leverages containers to address resource utilization inefficiencies and aims to minimize the overall cost of leasing the infrastructure resources while meeting the deadline constraint of each individual workflow. To the best of our knowledge, this is the first approach that explicitly addresses VM sharing in the context of WaaS by modeling the use of containers in the resource provisioning and scheduling heuristics. Our simulation results demonstrate its responsiveness to environmental uncertainties, its ability to meet deadlines, and its cost-efficiency when compared to a state-of-the-art algorithm.HighlightsA dynamic and scalable algorithm to schedule multiple workflows is presented.The algorithm is designed for multi-tenant Workflow as a Service platforms.It aims to minimize the total cost of leased resources while meeting the individual deadline of workflows.The use of containers is proposed to address resource usage inefficiencies.
机译: 摘要 以及从越来越强大的科学仪器收集的数据的可用性,工作流已成为一种以越来越快的速度取得重大科学进步的普遍手段。新兴的工作流即服务(WaaS)平台为科学家提供了一种简单,易于访问且经济高效的方式,可随时随地在云中部署其应用程序。它们是多租户框架,旨在管理异构工作流的连续工作负载的执行。为此,他们利用基础架构即服务(IaaS)提供程序提供的计算,存储和网络资源。因此,在任何给定的时间点,WaaS平台都应该能够有效地调度具有不同特征和服务质量要求的任意数量的工作流。因此,我们提出了专门为WaaS环境设计的资源供应和调度策略。该算法具有可扩展性和动态性,可以适应环境和工作负载的变化。它利用容器来解决资源利用效率低下的问题,旨在最大程度地降低租赁基础架构资源的总成本,同时满足每个工作流程的最后期限约束。据我们所知,这是第一种通过在资源供应和调度试探法中对容器的使用进行建模来明确解决WaaS上下文中的VM共享的方法。与最先进的算法相比,我们的仿真结果证明了其对环境不确定性的响应能力,满足最终期限的能力以及成本效益。 突出显示 提出了用于调度多个工作流的动态且可扩展的算法。 < ce:label>• 该算法旨在用于多租户工作流即服务平台。 目的是在满足各个截止日期的同时,将租赁资源的总成本降至最低 建议使用容器来解决资源使用效率低下的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号