首页> 外文期刊>Future generation computer systems >Leveraging content similarity among VMI files to allocate virtual machines in cloud
【24h】

Leveraging content similarity among VMI files to allocate virtual machines in cloud

机译:利用VMI文件之间的内容相似性在云中分配虚拟机

获取原文
获取原文并翻译 | 示例

摘要

AbstractTo meet a myriad of customers’ demands, a large number of virtual machines (VMs) have to be provisioned simultaneously in cloud data centers. Provisioning is usually time consuming due to the large size of virtual machine image (VMI) file that needs to be transferred via networks. To address this issue, researchers attempt to leverage the content similarity among different VMI files to reduce the volume of transferred data. In the VM provisioning, the VM packing problem that minimizes the number of physical machines is another important issue. In this paper, our goal is to find a solution that tries to pack VMs to the minimum number of PMs as well as significantly reduces the total amount of transferred data. We formally define the problem of VM packing and minimizing the data transferring in the VM provisioning, named RTVD-VA. We first propose an approximation algorithm to minimize the amount of transferred VMI data when provisioningKVMs with the same size to a single physical machine. We then extend the algorithm to address the scenario of multiple PMs when using the minimum number of PMs. Based on the above two approximation algorithms, we propose a heuristic algorithm, namely Balance-Placement, to solve the problem in general cases. Our simulation results show that Balance-Placement outperforms existing solutions like PSO and Greedy-Cache and achieves the least amount of transferred data and the minimum number of used PMs in most scenarios.HighlightsDefine minimizing the amount of transferred virtual machine image blocks (MVFDT).Define balancing between MVFDT and virtual machine packing; prove its NP-hardness.Two approximation algorithms are proposed for the special cases of above problem.A heuristic algorithm is given for general case of the problem.Simulations show the efficiency of the heuristic algorithm.
机译: 摘要 为了满足无数客户的需求,大量的虚拟机(VM)必须同时在云数据中心中配置。由于需要通过网络传输大量的虚拟机映像(VMI)文件,因此配置通常很耗时。为了解决这个问题,研究人员试图利用不同VMI文件之间的内容相似性来减少传输的数据量。在VM设置中,使物理机数量最少的VM打包问题是另一个重要问题。在本文中,我们的目标是找到一种解决方案,尝试将VM打包到最小数量的PM上,并显着减少传输的数据总量。我们正式定义了VM打包问题,并在名为RTVD-VA的VM设置中最小化了数据传输。我们首先提出一种近似算法,以在配置 K 具有相同大小的VM到单个VM物理机器。然后,当使用最少数量的PM时,我们将算法扩展为解决多个PM的情况。基于以上两种近似算法,提出了一种启发式算法,即Balance-Placement,以解决一般情况下的问题。我们的仿真结果表明,在大多数情况下,Balance-Placement优于现有的解决方案(如PSO和Greedy-Cache),并实现了最少的传输数据量和最少的PM使用量。 突出显示 定义最小化传输的虚拟机映像块(MVFDT)的数量。 •• 定义MVFDT和虚拟机打包之间的平衡;证明其NP硬度。 针对该问题的一般情况给出了一种启发式算法。 / ce:para> 仿真显示了启发式算法的效率。

著录项

  • 来源
    《Future generation computer systems》 |2018年第2期|528-542|共15页
  • 作者单位

    School of Information Science and Engineering, Central South University;

    Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology;

    School of Information Science and Engineering, Central South University;

    School of Information Science and Engineering, Central South University;

    Department of Electrical Engineering and Computer Science, Cleveland State University;

    School of Information Science and Engineering, Central South University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Virtual machine placement; Virtual machine images; Optimization; Content sharing;

    机译:虚拟机放置;虚拟机映像;优化;内容共享;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号