首页> 外文期刊>Future generation computer systems >RIMS: A Real-time and Intelligent Monitoring System for live-broadcasting platforms
【24h】

RIMS: A Real-time and Intelligent Monitoring System for live-broadcasting platforms

机译:RIMS:用于直播平台的实时和智能监控系统

获取原文
获取原文并翻译 | 示例

摘要

Personal live shows on Internet streaming platforms currently are blooming as one of the most popular applications on mobile phones and especially attracting millions of young generation users. The content supervision on live streaming platforms, in which there are thousands or hundreds of show rooms for performing and chatting synchronously, is a major concern with the development of this new service. Traditional image captures and real-time content analysis experience huge difficulties such as processing delay, data overwhelming, and matching overhead. In this paper, we propose a comprehensive method to monitor real-time live stream and to identify illegal or unchartered live misbehaviors intelligently based on various proposed aspects instead of image analysis only. The proposed system called RIMS makes use of several novel indicators on show room status rather than analyzing images solely to support real-time requirements. Three detecting techniques are adopted: self-adaptive threshold-based abnormal traffic detection, sensitive Danmaku comment perception, and frame difference analysis. RIMS can detect dramatically increasing of user number in a show room, filter sensitive words in Danmaku, and capture segmentation of video scenes by frame difference analysis. We deploy our system to monitor a typical live-broadcasting platform called panda.tv, and overall accuracy of detection via three indicators reaches 90.1%. The application of RIMS can change current supervison methods on live platforms that they totally rely on real-time manual review or after the event check. The key techniques in RIMS can also be widely employed in many other mobile applications in edge computing such as video surveillance in Internet of Things and mobile short video sharing. (C) 2018 Elsevier B.V. All rights reserved.
机译:互联网流媒体平台上的个人现场表演目前正成为手机上最受欢迎的应用程序之一,并且特别吸引了数百万年轻一代用户。实时流媒体平台上的内容监督是其中一项主要的关注点,在实时流媒体平台中,成千上万个展示厅用于同步执行和聊天。传统的图像捕获和实时内容分析遇到巨大的困难,例如处理延迟,数据不堪重负和匹配开销。在本文中,我们提出了一种综合的方法来监控实时实时流,并基于提出的各个方面而不仅仅是图像分析,智能地识别非法或未知的实时不良行为。所提出的称为RIMS的系统利用了几个关于陈列室状态的新颖指示器,而不是仅仅为了支持实时需求而分析图像。采用三种检测技术:基于自适应阈值的异常流量检测,敏感的Danmaku评论感知和帧差异分析。 RIMS可以检测展示厅中用户数量的急剧增加,在Danmaku中过滤敏感词,并通过帧差异分析捕获视频场景的分段。我们将系统部署为监视名为panda.tv的典型直播平台,并且通过三个指标进行检测的总体准确性达到90.1%。 RIMS的应用程序可以在实时平台上更改当前的监督方法,这些方法完全依赖于实时手动审核或事件检查之后。 RIMS中的关键技术还可以广泛地用于边缘计算的许多其他移动应用程序中,例如物联网中的视频监视和移动短视频共享。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Future generation computer systems》 |2018年第10期|259-266|共8页
  • 作者单位

    China Univ Geosci Wuhan, Sch Comp Sci, Wuhan, Hubei, Peoples R China|Guizhou Univ, Guizhou Prov Key Lab Publ Big Data, Guiyang, Guizhou, Peoples R China;

    China Univ Geosci Wuhan, Sch Comp Sci, Wuhan, Hubei, Peoples R China|China Univ Geosci Wuhan, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan, Hubei, Peoples R China|Guizhou Univ, Guizhou Prov Key Lab Publ Big Data, Guiyang, Guizhou, Peoples R China;

    Deakin Univ, Sch Informat Technol, Geelong, Vic, Australia;

    Univ East Anglia, Sch Comp Sci, Norwich, Norfolk, England;

    China Univ Geosci Wuhan, Sch Comp Sci, Wuhan, Hubei, Peoples R China;

    Univ West London, Sch Comp & Engn, London, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Live streaming platform; Anomaly detection; Fuzzy matching; Frame difference analysis; State awareness;

    机译:直播平台;异常检测;模糊匹配;帧差异分析;状态感知;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号