首页> 外文期刊>Future generation computer systems >Solving unsymmetric sparse systems of linear equations with PARDISO
【24h】

Solving unsymmetric sparse systems of linear equations with PARDISO

机译:用PARDISO解线性方程组的非对称稀疏系统

获取原文
获取原文并翻译 | 示例

摘要

Supernode partitioning for unsymmetric matrices together with complete block diagonal supernode pivoting and asynchronous computation can achieve high gigaflop rates for parallel sparse LU factorization on shared memory parallel computers. The progress in weighted graph matching algorithms helps to extend these concepts further and unsymmetric preper-mutation of rows is used to place large matrix entries on the diagonal. Complete block diagonal supernode pivoting allows dynamical interchanges of columns and rows during the factorization process. The level-3 BLAS efficiency is retained and an advanced two-level left-right looking scheduling scheme results in good speedup on SMP machines. These algorithms have been integrated into the recent unsymmetric version of the PARDISO solver. Experiments demonstrate that a wide set of unsymmetric linear systems can be solved and high performance is consistently achieved for large sparse unsymmetric matrices from real world applications.
机译:非对称矩阵的超节点分区以及完整的块对角线超节点透视和异步计算可以为共享内存并行计算机上的并行稀疏LU分解实现高千兆位速率。加权图匹配算法的进步有助于进一步扩展这些概念,并且使用行的非对称预置换将大矩阵条目放置在对角线上。完整的块对角超节点枢轴可在分解过程中动态交换列和行。保留了3级BLAS效率,并且先进的两级左右视图调度方案可提高SMP机器的速度。这些算法已集成到PARDISO解算器的最新非对称版本中。实验表明,对于现实应用中的大型稀疏非对称矩阵,可以解决各种不对称线性系统,并且始终如一地实现高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号