首页> 外文期刊>Future generation computer systems >Linked provenance data: A semantic Web-based approach to interoperable workflow traces
【24h】

Linked provenance data: A semantic Web-based approach to interoperable workflow traces

机译:链接的来源数据:一种基于语义Web的可互操作的工作流跟踪方法

获取原文
获取原文并翻译 | 示例

摘要

The Third Provenance Challenge (PC3) offered an opportunity for provenance researchers to evaluate the interoperability of leading provenance models with special emphasis on importing and querying workflow traces generated by others. We investigated interoperability issues related to reusing Open Provenance Model (OPM)-based workflow traces. We compiled data about interoperability issues that were observed during PC3 and use that data to help describe and motivate solution paths for two outstanding interoperability issues in OPM-based provenance data reuse: (i) a provenance trace often requires both generic provenance data and domain-specific data to support future reuse (such as querying); (ii) diverse provenance traces (possibly from different sources) often require preservation and interconnection to support future aggregation and comparison. In order to address these issues and to facilitate interoperable reuse, integration, and alignment of provenance data, we propose a Semantic Web-based approach known as Linked Provenance Data, where: (i) the Web Ontology Language (OWL) can be used to support complex domain concept modeling, such as subtype taxonomy and concept alignment, and seamlessly connect domain extensions to 0PM core concepts; (ii) Linked Data can enable open and transparent infrastructure for provenance data reuse.
机译:第三次出处挑战(PC3)为出处研究人员提供了一个机会,可以评估主要出处模型的互操作性,并特别着重于导入和查询其他人生成的工作流跟踪。我们调查了与重用基于开放资源模型(OPM)的工作流跟踪相关的互操作性问题。我们整理了PC3期间发现的有关互操作性问题的数据,并使用该数据来帮助描述和激发基于OPM的出处数据重用中两个未解决的互操作性问题的解决方案路径:(i)出处跟踪通常需要通用出处数据和域支持将来重用的特定数据(例如查询); (ii)各种来源痕迹(可能来自不同来源)通常需要保存和互连,以支持将来的汇总和比较。为了解决这些问题并促进源数据的互操作性重用,集成和对齐,我们提出了一种基于语义Web的方法,称为链接源数据,其中:(i)Web本体语言(OWL)可用于支持复杂的领域概念建模,例如子类型分类和概念对齐,并将领域扩展无缝连接到0PM核心概念; (ii)关联数据可以为开放源数据复用提供开放透明的基础架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号