首页> 外文期刊>Future generation computer systems >Modeling throughput sampling size for a cloud-hosted data scheduling and optimization service
【24h】

Modeling throughput sampling size for a cloud-hosted data scheduling and optimization service

机译:为云托管的数据调度和优化服务建模吞吐量采样大小

获取原文
获取原文并翻译 | 示例

摘要

As big-data processing and analysis dominates the usage of the Cloud systems, the need for Cloud-hosted data scheduling and optimization services increases. One key component for such a service is to provide available bandwidth and achievable throughput estimation capabilities, since all scheduling and optimization decisions would be built on top of this information. The biggest challenge in providing these estimation capabilities is the dynamic decision of what proportion of the actual dataset, when transferred, would give us an accurate estimate of the bandwidth and throughput achieved by transferring the whole data set. That proportion of data is called the sampling size (or the probe size). Although small fixed sample sizes worked well for high-latency low-bandwidth networks in the past, high-bandwidth networks require much larger and more dynamic sample sizes, since an accurate estimation now also depends on how fast the transfer protocol can saturate that fat network link. In this study, we present a model to decide the optimal sampling size based on the data size and estimated capacity of the network. Our results show that the predicted sampling size is very accurate compared to the targeted best sampling size for a certain file transfer in a majority of the cases.
机译:由于大数据处理和分析主导着云系统的使用,因此对云托管的数据调度和优化服务的需求增加了。这种服务的一个关键组件是提供可用的带宽和可实现的吞吐量估计功能,因为所有调度和优化决策都将基于此信息。提供这些估计功能的最大挑战是动态决定实际数据集在传输时所占的比例,从而为我们提供对通过传输整个数据集实现的带宽和吞吐量的准确估计。那部分数据称为采样大小(或探针大小)。尽管过去较小的固定样本量对于高延迟低带宽网络非常有效,但是高带宽网络需要更大,更动态的样本量,因为准确的估算现在还取决于传输协议可以使胖网络饱和的速度。链接。在这项研究中,我们提出了一个模型,用于根据数据大小和网络的估计容量来决定最佳采样大小。我们的结果表明,在大多数情况下,与某些文件传输的目标最佳采样大小相比,预测的采样大小非常准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号