首页> 外文期刊>Future generation computer systems >A family of heuristics for agent-based elastic Cloud bag-of-tasks concurrent scheduling
【24h】

A family of heuristics for agent-based elastic Cloud bag-of-tasks concurrent scheduling

机译:基于代理的弹性云任务包并发调度的启发式系列

获取原文
获取原文并翻译 | 示例

摘要

The scheduling and execution of bag-of-tasks applications (BoTs) in Clouds is performed on sets of virtualized Cloud resources that start being exhausted right after their allocation disregarding whether tasks are being executed. In addition, BoTs may be executed in potentially heterogeneous sets of Cloud resources, which may be either previously allocated for a different and fixed number of hours or dynamically reallocated as needed. In this paper, a family of 14 scheduling heuristics for concurrently executing BoTs in Cloud environments is proposed. The Cloud scheduling heuristics are adapted to the resource allocation settings (e.g., 1-hour time slots) of Clouds by focusing on maximizing Cloud resource utilization based on the remaining allocation times of Cloud resources. Cloud scheduling heuristics supported by information about BoT tasks (e.g., task size) and/or Cloud resource performances are proposed. Additionally, scheduling heuristics that require no information of either Cloud resources or tasks are also proposed. The Cloud scheduling heuristics support the dynamic inclusion of new Cloud resources while scheduling and executing a given BoT without rescheduling. Furthermore, an elastic Cloud resource allocation mechanism that autonomously and dynamically reallocates Cloud resources on demand to BoT executions is proposed. Moreover, an agent-based Cloud BoT scheduling approach that supports concurrent and parallel scheduling and execution of BoTs, and concurrent and parallel dynamic selection and composition of Cloud resources (by making use of the well-known contract net protocol) from multiple and distributed Cloud providers is designed and implemented. Empirical results show that BoTs can be (ⅰ) efficiently executed by attaining similar (in some cases shorter) makespans to commonly used benchmark heuristics (e.g., Max-min), (ⅱ) effectively executed by achieving a 100% success execution rate even with high BoT execution request rates and executing BoTs in a concurrent and parallel manner, and that (ⅲ) BoTs are economically executed by elastically reallocating Cloud resources on demand.
机译:Clouds中的任务袋应用程序(BoT)的调度和执行是在虚拟化Cloud资源集上执行的,这些虚拟Cloud资源在分配之后就立即耗尽,而不管是否正在执行任务。此外,可以在潜在的异构云资源集中执行BoT,这些资源可以事先分配不同的固定小时数,也可以根据需要动态重新分配。本文提出了一个由14个调度启发式算法组成的系列,用于在云环境中同时执行BoT。通过基于云资源的剩余分配时间专注于最大限度地利用云资源,使云调度试探法适应云的资源分配设置(例如1小时时隙)。提出了关于BoT任务(例如任务大小)和/或云资源性能的信息支持的云调度启发法。此外,还提出了调度启发式方法,该方法不需要云资源或任务的信息。云调度试探法支持在不重新调度的情况下调度和执行给定BoT时动态包含新的云资源。此外,提出了一种弹性的云资源分配机制,该机制可根据需要向BoT执行自动并动态地重新分配云资源。此外,基于代理的Cloud BoT调度方法支持并发和并行调度和执行BoT,并支持并发和并行动态选择和组合来自多个分布式云的Cloud资源(通过使用众所周知的合同网协议)提供者的设计和实现。实证结果表明,通过获得与常用基准启发式算法(例如,最大-最小)相似(在某些情况下更短)的构建时间,可以有效执行BoT(ⅰ),即使达到100%的成功执行率也可以有效执行BoT BoT执行请求率高,并且以并发和并行方式执行BoT,并且(B)BoT通过按需弹性重新分配云资源来经济地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号