首页> 外文期刊>Future generation computer systems >Dynamic tuning of the workload partition factor and the resource utilization in data-intensive applications
【24h】

Dynamic tuning of the workload partition factor and the resource utilization in data-intensive applications

机译:在数据密集型应用程序中动态调整工作负载分配因子和资源利用率

获取原文
获取原文并翻译 | 示例

摘要

The recent data deluge needing to be processed represents one of the major challenges in the computational field. This fact led to the growth of specially-designed applications known as data-intensive applications. In general, in order to ease the parallel execution of data-intensive applications input data is divided into smaller data chunks that can be processed separately. However, in many cases, these applications show severe performance problems mainly due to the load imbalance, inefficient use of available resources, and improper data partition policies. In addition, the impact of these performance problems can depend on the dynamic behavior of the application. This work proposes a methodology to dynamically improve the performance of data-intensive applications based on: (ⅰ) adapting the size and the number of data partitions to reduce the overall execution time; and (ⅱ) adapting the number of processing nodes to achieve an efficient execution. We propose to monitor the application behavior for each exploration (query) and use gathered data to dynamically tune the performance of the application. The methodology assumes that a single execution includes multiple related queries on the same partitioned workload. The adaptation of the workload partition factor is addressed through the definition of the initial size for the data chunks; the modification of the scheduling policy to send first data chunks with large processing times; dividing of the data chunks with the biggest associated computation times; and joining of data chunks with small computation times. The criteria for dividing or gathering chunks are based on the chunks' associated execution time (average and standard deviation) and the number of processing elements being used. Additionally, the resources utilization is addressed through the dynamic evaluation of the application performance and the estimation and modification of the number of processing nodes that can be efficiently used. We have evaluated our strategy using as cases of study a real and a synthetic data-intensive application. Analytical expressions have been analyzed through simulation. Applying our methodology, we have obtained encouraging results reducing total execution times and efficient use of resources.
机译:最近需要处理的数据泛滥代表了计算领域的主要挑战之一。这一事实导致了专门设计的应用程序(称为数据密集型应用程序)的增长。通常,为了简化数据密集型应用程序的并行执行,将输入数据划分为较小的数据块,可以单独处理这些数据块。但是,在许多情况下,这些应用程序显示出严重的性能问题,这主要是由于负载不平衡,可用资源使用效率低下以及数据分区策略不正确造成的。此外,这些性能问题的影响可能取决于应用程序的动态行为。这项工作提出了一种基于以下方面动态地提高数据密集型应用程序性能的方法:(ⅰ)调整数据分区的大小和数量以减少总体执行时间; (ⅱ)调整处理节点的数量以实现有效执行。我们建议监视每个探索(查询)的应用程序行为,并使用收集的数据动态调整应用程序的性能。该方法假设单个执行包括对同一个分区工作负载的多个相关查询。通过定义数据块的初始大小,可以解决工作负载分配因子的调整问题。修改调度策略以发送处理时间长的第一数据块;划分具有最大相关计算时间的数据块;并以较小的计算时间连接数据块。划分或收集块的标准基于块的关联执行时间(平均和标准偏差)和所使用的处理元素的数量。此外,通过动态评估应用程序性能以及评估和修改可以有效使用的处理节点数量,可以解决资源利用问题。我们以实际和综合数据密集型应用程序为研究案例,评估了我们的策略。解析表达式已通过仿真进行了分析。应用我们的方法,我们获得了令人鼓舞的结果,减少了总执行时间并有效利用了资源。

著录项

  • 来源
    《Future generation computer systems》 |2014年第7期|162-177|共16页
  • 作者单位

    Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain;

    Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain;

    Estudis d'Informatica, Multimedia i Telecomunicacio, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;

    Escola Universitaria Salesiana de Sarria, 08017 Barcelona, Spain;

    Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain;

    Computer Architecture and Operating Systems Department, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Load balancing; Dynamic tuning; Data-intensive applications; Divisible Load Theory (DLT);

    机译:负载均衡;动态调整;数据密集型应用程序;可分负荷理论(DLT);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号