首页> 外文期刊>Future generation computer systems >Scheduling online mixed-parallel workflows of rigid tasks in heterogeneous multi-cluster environments
【24h】

Scheduling online mixed-parallel workflows of rigid tasks in heterogeneous multi-cluster environments

机译:在异构多集群环境中安排刚性任务的在线混合并行工作流

获取原文
获取原文并翻译 | 示例

摘要

Workflow scheduling on parallel systems has long been known to be a NP-complete problem. As modern grid and cloud computing platforms emerge, it becomes indispensable to schedule mixed-parallel workflows in an online manner in a speed-heterogeneous multi-cluster environment. However, most existing scheduling algorithms were not developed for online mixed-parallel workflows of rigid data-parallel tasks and multi-cluster environments, therefore they cannot handle the problem efficiently. In this paper, we propose a scheduling framework, named Mixed-Parallel Online Workflow Scheduling (MOWS), which divides the entire scheduling process into four phases: task prioritizing, waiting queue scheduling, task rearrangement, and task allocation. Based on this framework, we developed four new methods: shortest-workflow-first, priority-based backfilling, preemptive task execution and All-EFT task allocation, for scheduling online mixed-parallel workflows of rigid tasks in speed-heterogeneous multi-cluster environments. To evaluate the proposed scheduling methods, we conducted a series of simulation studies and made comparisons with previously proposed approaches in the literature. The experimental results indicate that each of the four proposed methods outperforms existing approaches significantly and all these approaches in MOWS together can achieve more than 20% performance improvement in terms of average turnaround time.
机译:长期以来,众所周知,并行系统上的工作流调度是一个NP完全问题。随着现代网格和云计算平台的出现,在速度异构的多集群环境中以在线方式调度混合并行工作流变得必不可少。但是,大多数现有的调度算法并未针对刚性数据并行任务和多集群环境的在线混合并行工作流开发,因此它们无法有效处理该问题。在本文中,我们提出了一个名为混合并行在线工作流调度(MOWS)的调度框架,该框架将整个调度过程分为四个阶段:任务优先级划分,等待队列调度,任务重排和任务分配。在此框架的基础上,我们开发了四种新方法:最短工作流优先,基于优先级的回填,抢先任务执行和All-EFT任务分配,用于在速度异构的多集群环境中调度刚性任务的在线混合并行工作流。为了评估提出的调度方法,我们进行了一系列仿真研究,并与文献中先前提出的方法进行了比较。实验结果表明,四种提出的方​​法中的每一种均明显优于现有方法,并且MOWS中的所有这些方法一起可以在平均周转时间方面实现20%以上的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号