首页> 外文期刊>Future generation computer systems >Real-time data mining of massive data streams from synoptic sky surveys
【24h】

Real-time data mining of massive data streams from synoptic sky surveys

机译:来自天气观测的海量数据流的实时数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

The nature of scientific and technological data collection is evolving rapidly, data volumes and rates grow exponentially, with increasing complexity and information content, and there has been a transition from static data sets to data streams that must be analyzed in real time. Interesting or anomalous phenomena must be quickly characterized and followed up with additional measurements via optimal deployment of limited assets. Modern astronomy presents a variety of such phenomena in the form of transient events in digital synoptic sky surveys, including cosmic explosions (supernovae, gamma ray bursts), relativistic phenomena (black hole formation, jets), potentially hazardous asteroids, etc. We have been developing a set of machine learning tools to detect, classify and plan a response to transient events for astronomy applications, using the Catalina Real-time Transient Survey (CRTS) as a scientific and methodological testbed. The ability to respond rapidly to the potentially most interesting events is a key bottleneck that limits the scientific returns from the current and anticipated synoptic sky surveys. Similar challenge arises in other contexts, from environmental monitoring using sensor networks to autonomous spacecraft systems. Given the exponential growth of data rates, and the time-critical response, we need a fully automated and robust approach. We describe the results obtained to date, and the possible future developments.
机译:科技数据收集的性质正在迅速发展,数据量和速率呈指数增长,并且复杂性和信息含量也不断增加,并且已经从静态数据集过渡到必须实时分析的数据流。有趣的或异常的现象必须被快速表征,并通过有限资产的最佳部署进行后续测量。现代天文学在数字天气观测中以瞬态事件的形式展示了各种这样的现象,包括宇宙爆炸(超新星,伽马射线爆发),相对论现象(黑洞形成,射流),潜在危险的小行星等。使用Catalina实时瞬态测量(CRTS)作为科学和方法学的测试平台,开发了一套机器学习工具来检测,分类和计划对天文学应用的瞬态事件的响应。快速响应潜在最有趣事件的能力是限制当前和预期天气概要的科学回报的关键瓶颈。在其他情况下,从使用传感器网络的环境监控到自主航天器系统,也面临类似的挑战。考虑到数据速率的指数增长和对时间要求严格的响应,我们需要一种完全自动化且可靠的方法。我们描述了迄今为止获得的结果以及可能的未来发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号