首页> 外文期刊>Future generation computer systems >Top-k followee recommendation over microblogging systems by exploiting diverse information sources
【24h】

Top-k followee recommendation over microblogging systems by exploiting diverse information sources

机译:通过利用各种信息源在微博系统上进行Top-k追随者推荐

获取原文
获取原文并翻译 | 示例

摘要

Followee recommendation plays an important role in information sharing over microblogging platforms. We frame this problem as a top-k ranking in collaborative filtering (CF). The difficulty is that explicit user-to-user ratings are not available on microblogging systems. Thus existing CF schemes are not applicable to followee recommendation over microblogging systems. To solve this problem, in this paper, we propose a novel followee ranking scheme using a variation of the latent factor model, which leverages implicit users' feedback including both tweet content and social relation information. To achieve good top-k recommendation, we introduce a rank-based criterion to latent factor model (LFM). The main obstacle for training the model parameters is the non-smoothness of the objective function of LFM, which makes traditional parameter optimization methods infeasible. To tackle with the problem, we further design a smooth version of the objective function. We conduct comprehensive experiments on a large-scale dataset collected from Sina Weibo, the most popular microblogging system in China and a real world experiment on the Amazon Mechanical Turk CrowdSourcing platform to evaluate the performance of our design. The results show that our scheme greatly outperforms existing schemes in terms of precision and top-k ranking by 46.8% and 32.8%, respectively.
机译:追随者推荐在通过微博平台进行信息共享中起着重要作用。我们将此问题定为协作过滤(CF)中的前k位。困难在于微博系统上没有明确的用户对用户评分。因此,现有的CF方案不适用于微博系统上的追随者推荐。为了解决这个问题,在本文中,我们提出了一种利用潜在因子模型的变体的新颖的追随者排名方案,该方案利用了隐含的用户反馈,包括推文内容和社会关系信息。为了获得良好的top-k推荐,我们将基于等级的准则引入了潜在因子模型(LFM)。训练模型参数的主要障碍是LFM目标函数的不平滑性,这使得传统的参数优化方法不可行。为了解决该问题,我们进一步设计了目标函数的平滑版本。我们对从新浪微博(中国最受欢迎的微博系统)收集的大规模数据集进行了全面实验,并在Amazon Mechanical Turk CrowdSourcing平台上进行了真实世界的实验,以评估设计的性能。结果表明,我们的方案在精度和top-k排名方面分别优于现有方案,分别达到46.8%和32.8%。

著录项

  • 来源
    《Future generation computer systems》 |2016年第2期|534-543|共10页
  • 作者单位

    Services Computing Technology and System Laboratory, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China;

    Services Computing Technology and System Laboratory, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China;

    Services Computing Technology and System Laboratory, Cluster and Grid Computing Laboratory, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microblogging; Followee recommendation; Multiple source information;

    机译:微博;追随者推荐;多种来源信息;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号