首页> 外文期刊>Future generation computer systems >Resource allocation decision model for dependable and cost-effective grid applications based on Grid Bank
【24h】

Resource allocation decision model for dependable and cost-effective grid applications based on Grid Bank

机译:基于网格银行的可靠且经济高效的网格应用程序资源分配决策模型

获取原文
获取原文并翻译 | 示例

摘要

Distributed and parallel computing systems such as grid- or cloud-computing have been widely applied, studied and developed for various large-scale computing requirements in cross-administrative domains. However, two important issues, the economy of computation and the dependability of service-oriented computing, have not been thoroughly deliberated. In this regard, we formulate a grid resource allocation decision model that includes (1) a service reliability assessment, which derives the computing dependability from the universal generating function methodology (UGFM), and (2) a virtual payment assessment, which appraises the service expense for the contribution of each resource based on the expense function. For the near-optimal (or optimal) non-dominant solutions (service expense and service reliability), this paper presents two bi-objective soft-computing techniques, PC-GA (genetic algorithm) and PC-PSO (particle swarm optimization), where the Pareto-set cluster (PC) contains elite-selected and reborn mechanisms to generate new non-dominant solutions and strengthen the optimization effectiveness of the Pareto frontier. Finally, a virtual grid system is provided as a case study to illustrate the performance of two optimization methodologies and to analyze the pros and cons in terms of different resource allocation decisions.
机译:分布式和并行计算系统(例如网格或云计算)已被广泛应用,研究和开发,以满足跨管理领域中的各种大规模计算需求。但是,尚未充分考虑两个重要问题,即计算的经济性和面向服务的计算的可靠性。在这方面,我们制定了一个网格资源分配决策模型,该模型包括(1)服务可靠性评估,该评估从通用生成函数方法(UGFM)得出计算可靠性,以及(2)虚拟支付评估,对服务进行评估基于费用函数的每种资源贡献的费用。对于接近最优(或最优)的非主导解决方案(服务费用和服务可靠性),本文提出了两种双目标软计算技术,即PC-GA(遗传算法)和PC-PSO(粒子群优化),帕累托集集群(PC)包含精英选择和重生的机制,以生成新的非优势解并增强帕累托边界的优化有效性。最后,提供了一个虚拟网格系统作为案例研究,以说明两种优化方法的性能,并根据不同的资源分配决策来分析其优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号