首页> 外文期刊>Future generation computer systems >Network-aware virtual machine migration in an overcommitted cloud
【24h】

Network-aware virtual machine migration in an overcommitted cloud

机译:过量使用的云中可感知网络的虚拟机迁移

获取原文
获取原文并翻译 | 示例

摘要

Virtualization, which acts as the underlying technology for cloud computing, enables large amounts of third-party applications to be packed into virtual machines (VMs). VM migration enables servers to be reconsolidated or reshuffled to reduce the operational costs of data centers. The network traffic costs for VM migration currently attract limited attention. However, traffic and bandwidth demands among VMs in a data center account for considerable total traffic. VM migration also causes additional data transfer overhead, which would also increase the network cost of the data center. This study considers a network-aware VM migration (NetVMM) problem in an overcommitted cloud and formulates it into a non-deterministic polynomial time-complete problem. This study aims to minimize network traffic costs by considering the inherent dependencies among VMs that comprise a multi-tier application and the underlying topology of physical machines and to ensure a good trade-off between network communication and VM migration costs. The mechanism that the swarm intelligence algorithm aims to find is an approximate optimal solution through repeated iterations to make it a good solution for the VM migration problem. In this study, genetic algorithm (GA) and artificial bee colony (ABC) are adopted and changed to suit the VM migration problem to minimize the network cost. Experimental results show that GA has low network costs when VM instances are small. However, when the problem size increases, ABC is advantageous to GA. The running time of ABC is also nearly half than that of GA. To the best of our knowledge, we are the first to use ABC to solve the NetVMM problem.
机译:虚拟化作为云计算的基础技术,使大量的第三方应用程序可以打包到虚拟机(VM)中。 VM迁移使服务器可以重新整合或重组,以降低数据中心的运营成本。 VM迁移的网络流量成本目前吸引的关注很少。但是,数据中心中VM之间的流量和带宽需求占了相当大的总流量。 VM迁移还会导致额外的数据传输开销,这也将增加数据中心的网络成本。这项研究考虑了过量使用云中的网络感知VM迁移(NetVMM)问题,并将其表述为不确定的多项式时间完成问题。这项研究旨在通过考虑组成多层应用程序的VM之间的固有依赖性以及物理机的基础拓扑,来最大程度地降低网络流量成本,并确保在网络通信和VM迁移成本之间取得良好的平衡。群智能算法旨在找到的机制是通过反复迭代的近似最佳解决方案,使其成为解决VM迁移问题的良好解决方案。在这项研究中,采用遗传算法(GA)和人工蜂群(ABC)进行更改以适应VM迁移问题,从而最大程度地降低网络成本。实验结果表明,当VM实例较小时,GA具有较低的网络成本。但是,当问题规模增大时,ABC对GA有利。 ABC的运行时间也几乎是GA的一半。据我们所知,我们是第一个使用ABC解决NetVMM问题的人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号