首页> 外文期刊>Future generation computer systems >TOLA: Topic-oriented learning assistance based on cyber-physical system and big data
【24h】

TOLA: Topic-oriented learning assistance based on cyber-physical system and big data

机译:TOLA:基于网络物理系统和大数据的面向主题的学习帮助

获取原文
获取原文并翻译 | 示例

摘要

;Massive open online courses (MOOC) is a novel educational model emerging in recent years, which is assisted by advanced techniques such as cloud computing, big data and Cyber-Physical Systems (CPS). Through adequate analysis assisted by big data, the quality of education is expected to be extensively improved. Unfortunately, the MOOC data are not fully utilized for educational innovation, because the existing research focuses on the data generated in the online learning but neglects other related data, such as the forum data. In this article, we propose a big-data-driven approach named TOLA for online learning evolution to discover students' learning pattern and guide courses improvement. Specifically, topic feature is extracted from MOOC forum through Latent Dirichlet Allocation, which is incorporated with other hybrid features. Through experiments, TOLA exhibits good performance in terms of complexity, efficiency and accuracy, facilitating the improvement of the quality of online education.
机译:;大规模开放式在线课程(MOOC)是近年来兴起的一种新颖的教育模式,它得到了诸如云计算,大数据和网络物理系统(CPS)等先进技术的辅助。通过大数据的辅助分析,教育的质量有望得到广泛提高。不幸的是,MOOC数据并未完全用于教育创新,因为现有研究集中于在线学习中生成的数据,而忽略了其他相关数据,例如论坛数据。在本文中,我们提出了一种名为TOLA的大数据驱动方法,用于在线学习的发展,以发现学生的学习模式并指导课程的改进。具体来说,主题特征是通过潜在Dirichlet分配从MOOC论坛中提取的,该特征与其他混合特征合并在一起。通过实验,TOLA在复杂性,效率和准确性方面表现出良好的性能,从而促进了在线教育质量的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号