首页> 外文期刊>Future generation computer systems >Multi-key privacy-preserving deep learning in cloud computing
【24h】

Multi-key privacy-preserving deep learning in cloud computing

机译:云计算中的多键隐私保护深度学习

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has attracted a lot of attention and has been applied successfully in many areas such as bioinformatics, imaging processing, game playing and computer security etc. On the other hand, deep learning usually requires a lot of training data which may not be provided by a sole owner. As the volume of data gets huge, it is common for users to store their data in a third-party cloud. Due to the confidentiality of the data, data are usually stored in encrypted form. To apply deep learning to these datasets owned by multiple data owners on cloud, we need to tackle two challenges: (ⅰ) the data are encrypted with different keys, all operations including intermediate results must be secure; and (ⅱ) the computational cost and the communication cost of the data owner(s) should be kept minimal. In our work, we propose two schemes to solve the above problems. We first present a basic scheme based on multi-key fully homomorphic encryption (MK-FHE), then we propose an advanced scheme based on a hybrid structure by combining the double decryption mechanism and fully homomorphic encryption (FHE). We also prove that these two multi-key privacy-preserving deep learning schemes over encrypted data are secure.
机译:深度学习已引起广泛关注,并已成功应用于生物信息学,成像处理,游戏和计算机安全等许多领域。另一方面,深度学习通常需要大量的培训数据,而这些可能不是唯一所有者。随着数据量的增加,用户通常将其数据存储在第三方云中。由于数据的机密性,数据通常以加密形式存储。为了将深度学习应用于云上多个数据所有者拥有的这些数据集,我们需要解决两个挑战:(ⅰ)使用不同的密钥对数据进行加密,包括中间结果在内的所有操作都必须安全; (ⅱ)数据所有者的计算成本和通信成本应保持最小。在我们的工作中,我们提出了两种方案来解决上述问题。我们首先提出一种基于多密钥完全同态加密(MK-FHE)的基本方案,然后我们通过结合双重解密机制和完全同态加密(FHE)提出一种基于混合结构的高级方案。我们还证明了这两种在加密数据上保留多密钥隐私的深度学习方案是安全的。

著录项

  • 来源
    《Future generation computer systems》 |2017年第9期|76-85|共10页
  • 作者单位

    School of Computational Science & Education Software, Guangzhou University, 510006, Guangzhou, PR China;

    School of Computational Science & Education Software, Guangzhou University, 510006, Guangzhou, PR China;

    School of Computational Science & Education Software, Guangzhou University, 510006, Guangzhou, PR China;

    College of Computer & Control Engineering, Nankai University, 300071, Tianjin, PR China;

    School of Computational Science & Education Software, Guangzhou University, 510006, Guangzhou, PR China;

    Department of Computer Science, The University of Hong Kong, Hong Kong, PR China;

    Institute of Information Engineering, Chinese Academy of Sciences, Beijing, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cryptography; Machine learning; Fully homomorphic encryption; Cloud computing;

    机译:密码学;机器学习;全同态加密;云计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号