首页> 外文期刊>Future generation computer systems >Clustering based virtual machines placement in distributed cloud computing
【24h】

Clustering based virtual machines placement in distributed cloud computing

机译:基于集群的虚拟机在分布式云计算中的位置

获取原文
获取原文并翻译 | 示例

摘要

Resource virtualization is one of the most prominent characteristics of cloud computing. The placement of virtual machines (VMs) in the physical machines determines the resource utilization efficiency and service quality. Especially for distributed cloud computing, where the data centers (DCs) span a large number of geographical areas and all DCs are connected by high speed internet, the placement of VMs of one big task or of one organization focuses on minimizing the distances and bandwidths between DCs. This minimizes communication latency and improves availability. A data center cluster should be found firstly to accommodate the requested VMs. The purpose is to minimize the maximum inter-DC distance. In contrast to existing method that only considers the distances between data centers, a more efficient clustering based 2-approximation algorithm is developed by taking full use of the topology and the density property of cloud network. The simulation shows the proposed algorithm is especially appropriate for very large scale problems. Then, the requested VMs should be partitioned to the DC cluster, so that the expensive inter-DC bandwidth is saved and the availability is improved. With the introduction of a half communication model, a novel heuristic algorithm which further cuts down the used bandwidths is presented to partition VMs. Its time complexity is reduced to O(n~2) by a factor of O(logn) and it runs 3 times faster than the existing method.
机译:资源虚拟化是云计算的最突出特征之一。虚拟机(VM)在物理机中的位置决定了资源利用效率和服务质量。特别是对于分布式云计算而言,数据中心(DC)跨越大量的地理区域,并且所有DC都通过高速Internet连接,一个大任务或一个组织的VM的放置着重于最大程度地减少彼此之间的距离和带宽DC。这样可以最小化通信延迟并提高可用性。首先应找到一个数据中心集群以容纳请求的虚拟机。目的是使最大DC间距离最小化。与仅考虑数据中心之间距离的现有方法相比,通过充分利用云网络的拓扑和密度特性,开发了一种基于聚类的高效2近似算法。仿真表明,所提出的算法特别适合非常大的问题。然后,应将请求的VM分区到DC群集,以便节省昂贵的DC间带宽并提高可用性。随着半通信模型的引入,提出了一种新的启发式算法,该算法进一步削减了所使用的带宽,以划分VM。它的时间复杂度降低了O(n〜2)到O(logn),并且运行速度是现有方法的3倍。

著录项

  • 来源
    《Future generation computer systems》 |2017年第1期|1-10|共10页
  • 作者单位

    School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China,Public Service Platform of Mobile Internet Application Security Industry, Shenzhen 518057, China;

    School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China,Shenzhen Applied Technology Engineering Laboratory for Internet Multimedia Application, Shenzhen 518055, China;

    School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China,Shenzhen Key Laboratory of Internet of Information Collaboration, Shenzhen 518055, China;

    School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China,Shenzhen Key Laboratory of Internet of Information Collaboration, Shenzhen 518055, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Virtual machines placement; Data center selection; Bandwidth minimizing; Cloud computing;

    机译:虚拟机放置;数据中心选择;带宽最小化;云计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号