首页> 外文期刊>Future generation computer systems >Sequence Clustering-based Automated Rule Generation for Adaptive Complex Event Processing
【24h】

Sequence Clustering-based Automated Rule Generation for Adaptive Complex Event Processing

机译:基于序列聚类的自适应复杂事件处理自动规则生成

获取原文
获取原文并翻译 | 示例

摘要

In Complex Event Processing (CEP), complex events are detected according to a set of rules that are defined by domain experts. However, it makes the reliability of the system decreased as dynamic changes occur in the domain environment or domain experts make mistakes. To address such problem, this study proposes a Sequence Clustering-based Automated Rule Generation (SCARC) that can automatically generate rules by mining decision-making history of domain experts based on sequence clustering and probabilistic graphical modeling. Furthermore, based on a two-way learning approach, the proposed method is able to support automated regular or occasional rule updates. It makes self-adaptive CEP system possible by combining the rule generation method and the existing dynamic CEP systems. This technique is verified by establishing an automated stock trading system, and the performance of the system is measured in terms of the rate of return. The study solves the aforementioned problems and shows excellent results with an increase of 19.32% in performance when compared to the existing dynamic CEP technique.
机译:在复杂事件处理(CEP)中,复杂事件是根据领域专家定义的一组规则来检测的。但是,随着域环境中发生动态变化或域专家犯错,它会使系统的可靠性降低。为了解决此类问题,本研究提出了一种基于序列聚类的自动规则生成(SCARC),该算法可以通过基于序列聚类和概率图形建模挖掘领域专家的决策历史来自动生成规则。此外,基于双向学习方法,所提出的方法能够支持定期或不定期自动更新规则。通过结合规则生成方法和现有的动态CEP系统,自适应CEP系统成为可能。通过建立自动股票交易系统来验证该技术,并根据回报率来衡量系统的性能。该研究解决了上述问题,与现有的动态CEP技术相比,其性能提高了19.32%,显示出出色的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号