首页> 外文期刊>Future generation computer systems >Dynamic fine-tuning stacked auto-encoder neural network for weather forecast
【24h】

Dynamic fine-tuning stacked auto-encoder neural network for weather forecast

机译:动态微调堆叠式自动编码器神经网络用于天气预报

获取原文
获取原文并翻译 | 示例

摘要

With the advent of the big data era, dynamic and real-time data have increased in both volume and variety. It is difficult to make accurate predictions regarding data as they undergo rapid and dynamic changes. Autonomous cloud computing aims to reduce the time required for traditional machine learning. The stacked auto-encoder is a neural network approach in machine learning for feature extraction. It attempts to model high-level abstractions and to reduce data dimensions by using multiple processing layers. However, some common issues may occur during the implementation of deep learning or neural network models, such as over-complicated dimensions of the input data and difficulty in processing dynamic data. Therefore, combining the concept of dynamic data-driven system with a stacked auto-encoder neural network will help obtain the dynamic data correlation or relationship between the prediction results and actual data in a dynamic environment. This study applies the concept of a dynamic data-driven system to obtain the correlations between the prediction goals and number of different combination results. Association analysis, sequence analysis, and stacked auto-encoder neural network are employed to design a dynamic data-driven system based on deep learning.
机译:随着大数据时代的到来,动态和实时数据的数量和种类都在增加。由于数据会经历快速而动态的变化,因此很难对数据做出准确的预测。自主云计算旨在减少传统机器学习所需的时间。堆叠式自动编码器是机器学习中用于特征提取的神经网络方法。它尝试通过使用多个处理层来对高级抽象进行建模并减少数据量。但是,在实施深度学习或神经网络模型期间,可能会发生一些常见问题,例如输入数据的维度过于复杂以及处理动态数据的难度。因此,将动态数据驱动系统的概念与堆叠式自动编码器神经网络相结合,将有助于在动态环境中获得动态数据的相关性或预测结果与实际数据之间的关系。这项研究应用动态数据驱动系统的概念来获得预测目标与不同组合结果数量之间的相关性。关联分析,序列分析和堆叠式自动编码器神经网络被用于设计基于深度学习的动态数据驱动系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号