首页> 外文期刊>Future generation computer systems >A locality-aware shuffle optimization on fat-tree data centers
【24h】

A locality-aware shuffle optimization on fat-tree data centers

机译:胖树数据中心上的基于位置的随机优化

获取原文
获取原文并翻译 | 示例

摘要

Shuffle is a data exchanging phase that is always inserted between two adjacent computations to deliverintermediate results in data centers. It generates a burst of traffic that exhausts the network bandwidth, debasing the availability of the core layer facilities in fat-tree topologies. Previous researches follow eitherflow inhibitionorinfrastructural upgradingto achieve a high utilization of core network resources. However, dynamic pressure from shuffle burst introduces more unpredictable usage of core network that disturbs the global locality-based optimization on task schedule. In this work, we reduce the core bandwidth consumption by scheduling the location of adjacent computing workers based on our proposed distance model that uses a similarity-based distance to evaluate the dynamic distance between fat-tree leaf-nodes. Task assignment further utilizes this distance to schedule workers to avoid high intensity usage of core network resources. This design improves the performance of shuffle phase in popular on-data-center algorithms as well as maintains infrastructural inexpensiveness of their fat-tree topology. The proposed models are evaluated on a semi-physical simulation test platform and compared to state-of-the-art solutions, such as Space Shuffle and Scalable Shuffle. The results show that our design achieves an up to 18% speedup on shuffle procedure and a 23% extension of network capacity. In addition, a significant mitigation of congestion can be obtained on the bottleneck of core network.
机译:随机播放是一个数据交换阶段,始终插入两个相邻的计算之间,以在数据中心中传递中间结果。它会产生大量流量,耗尽网络带宽,从而破坏胖树拓扑中核心层设施的可用性。以往的研究都遵循流量抑制或基础设施升级来实现核心网络资源的高利用率。但是,混洗突发产生的动态压力会导致核心网络的使用更加不可预测,这会干扰任务计划中基于全局局部性的优化。在这项工作中,我们基于我们提出的距离模型来调度相邻计算人员的位置,从而减少了核心带宽消耗,该距离模型使用基于相似性的距离来评估胖树叶节点之间的动态距离。任务分配进一步利用此距离来调度工作人员,以避免核心网络资源的高强度使用。这种设计提高了流行的数据中心算法中混洗阶段的性能,并保持了其胖树拓扑的基础设施廉价性。所提出的模型在半物理模拟测试平台上进行了评估,并与最新的解决方案(如“空间随机播放”和“可伸缩随机播放”)进行了比较。结果表明,我们的设计可将洗牌过程的速度提高18%,将网络容量扩展23%。此外,可以在核心网络的瓶颈上显着缓解拥塞。

著录项

  • 来源
    《Future generation computer systems》 |2018年第12期|31-43|共13页
  • 作者单位

    School of Computer Science and Engineering, Northwestern Polytechnical University;

    School of Computer Science and Engineering, Northwestern Polytechnical University;

    College of Computer Science and Software Engineering, Shenzhen University,Department of Electrical Engineering, Columbia University;

    Advanced Digital Sciences Center, University of Illinois at Singapore Pte Ltd,School of Computers, Guangdong University of Technology;

    Computer Science College, Sichuan University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Locality; Shuffle; Fat-tree network; Data-center; Node distance;

    机译:局部性;随机播放;胖树网络;数据中心;节点距离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号