首页> 外文期刊>Future generation computer systems >DESRP: An efficient differential evolution algorithm for stochastic demand-oriented resource placement in heterogeneous clouds
【24h】

DESRP: An efficient differential evolution algorithm for stochastic demand-oriented resource placement in heterogeneous clouds

机译:DESRP:一种高效的差异演化算法,用于异构云中面向随机需求的资源放置

获取原文
获取原文并翻译 | 示例

摘要

Geographically dispersed online services receive user requests from all over the world, and the dramatic fluctuation in the user requests that arrive then introduce stochastic demands for various resources. Based on distributed cloud platforms, the application service provider must find the optimal resource placement for maximizing revenue under constraints. Nevertheless, simultaneously considering demand stochasticity and pricing heterogeneity significantly increases problem complexity. To address the problem, we propose an efficient differential evolution algorithm for stochastic demand-oriented resource placement (DESRP). Experiments using simulated and realistic data indicate that with less than triple the time cost, DESRP outperforms existing algorithms and can increase revenue by up to 27%.
机译:地理位置分散的在线服务收到了来自世界各地的用户请求,到达的用户请求急剧波动,然后引入了对各种资源的随机需求。基于分布式云平台,应用程序服务提供商必须找到最佳资源布置,以在约束条件下最大化收入。但是,同时考虑需求随机性和定价异质性会大大增加问题的复杂性。为了解决该问题,我们针对随机的面向需求的资源放置(DESRP)提出了一种有效的差分进化算法。使用模拟和真实数据进行的实验表明,DESRP的时间成本不到三倍,胜过现有算法,最多可将收入提高27%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号