首页> 外文期刊>Future generation computer systems >Cost optimization for deadline-aware scheduling of big-data processing jobs on clouds
【24h】

Cost optimization for deadline-aware scheduling of big-data processing jobs on clouds

机译:成本优化,用于在云上进行截止日期的大数据处理作业调度

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing has been widely regarded as a capable solution for big data processing. Nowadays cloud service providers usually offer users virtual machines with various combinations of configurations and prices. As this new service scheme emerges, the problem of choosing the cost-minimized combination under a deadline constraint is becoming more complex for users. The complexity of determining the cost-minimized combination may be resulted from different causes: the characteristics of user applications, and providers’ setting on the configurations and pricing of virtual machine. In this paper, we proposed a variety of algorithms to help the users to schedule their big data processing workflow applications on clouds so that the cost can be minimized and the deadline constraints can be satisfied. The proposed algorithms were evaluated by extensive simulation experiments with diverse experimental settings.
机译:云计算已被广泛认为是大数据处理的有效解决方案。如今,云服务提供商通常为用户提供具有各种配置和价格组合的虚拟机。随着这种新服务方案的出现,对于用户而言,在截止期限约束下选择成本最小的组合的问题变得越来越复杂。确定成本最低组合的复杂性可能由多种原因引起:用户应用程序的特性以及提供商对虚拟机的配置和定价的设置。在本文中,我们提出了多种算法来帮助用户在云上调度其大数据处理工作流应用程序,从而可以最大程度地降低成本并满足期限约束。所提出的算法通过具有不同实验设置的大量模拟实验进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号