首页> 外文期刊>Future generation computer systems >EDAWS: A distributed framework with efficient data analytics workspace towards discriminative services for critical infrastructures
【24h】

EDAWS: A distributed framework with efficient data analytics workspace towards discriminative services for critical infrastructures

机译:EDAWS:具有高效数据分析工作区的分布式框架,可为关键基础设施提供区分性服务

获取原文
获取原文并翻译 | 示例

摘要

AbstractCritical infrastructure systems which are interrelated with people’s daily life perform functions in multiple domains. However, with the explosion of specialized textual information in such systems, providing discriminative services for users through potential knowledge discovery becomes an essential and technical concern. Once massive data analytics is conducted in standalone server, the performance will degenerate tremendously. Alternatively, people cannot conveniently get such discriminative (self-caring) services. To address these concerns, we propose the general solution ofEDAWS:a Novel Distributed Framework withEfficientDataAnalyticsWorkspace towards DiscriminativeService for Critical Infrastructures, through leveraging the state-of-the-art software technologies and computing paradigms. We argue it from the following aspects: Firstly, the server-side platform facilitates native data capture, storage, index and data mining with a systematic organization. Secondly, a text-mining approach with index building in parallel is conducted for various functional business, by exploiting the potential ofLucene-baseddistributed cluster. Thirdly, with the widespread usage of tiny but powerful mobile devices, the server-side platform could be accessed by mobile-side clients remotely in a more convenient way. To demonstrate our solution, a case study ofsmart residence prototypetowards discriminative services in terms of information retrieval, personalized information push, and hot topic discovery is thoroughly discussed. The extensively experimental studies are conducted for the prototype over various real-world datasets. Experimental results indicate that, data processing which runs on computing nodes has good scalability with data sizes and computing nodes, and the prototype passes from data to discriminative services successfully.HighlightsWe propose EDAWS, a distributed framework with efficient data analytics workspace.EDAWS can provide discriminative service for critical infrastructures.We give out a solution of accelerated Lucene index building in parallel manner.We give out knowledge representation model based text-mining approach.We present user interaction between server-side platform and mobile-side clients.Extensive experiments prove the framework’s efficiency and potentiality.
机译: 摘要 与人们的日常生活息息相关的关键基础设施系统在多个领域发挥作用。但是,随着这类系统中专业文本信息的爆炸式增长,通过潜在的知识发现为用户提供区分服务已成为必不可少的技术问题。一旦在独立服务器上进行了海量数据分析,性能将大大降低。另外,人们无法方便地获得这种歧视性(自理)服务。为了解决这些问题,我们提出了 EDAWS 具有 E fficient D ata A nalytics W orkspace朝向判别式 S 通过利用最新的软件技术和计算范例,为关键基础架构提供服务。我们从以下几个方面进行争论:首先,服务器端平台通过系统的组织来促进本机数据捕获,存储,索引和数据挖掘。其次,通过利用基于 Lucene的分布式集群的潜力,针对各种功能性业务进行了并行建立索引的文本挖掘方法。第三,随着微型但功能强大的移动设备的广泛使用,移动端客户端可以通过更方便的方式远程访问服务器端平台。为了证明我们的解决方案,我们全面讨论了智能住宅原型面向区分服务的案例研究,该案例涉及信息检索,个性化信息推送和热门话题发现。对原型进行了广泛的实验研究,涉及各种现实世界的数据集。实验结果表明,在计算节点上运行的数据处理在数据大小和计算节点上具有良好的可伸缩性,并且原型成功地从数据传递到区分服务。 < / ce:abstract> 突出显示 我们提出了EDAWS,这是一个具有高效数据分析工作区的分布式框架。 EDAWS可以为关键基础设施提供区分服务。 我们以并行方式给出了加速Lucene索引构建的解决方案。 我们给出了基于知识表示模型的文本挖掘方法。 < ce:list-item id =“ d1e634”> 我们介绍了服务器端平台与移动设备之间的用户交互 大量实验证明了该框架的效率和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号