首页> 外文期刊>Future generation computer systems >Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization
【24h】

Temporal people-to-people recommendation on social networks with sentiment-based matrix factorization

机译:基于情感的矩阵分解对社交网络的临时人对人推荐

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, the exponential advancement of social networks is creating new application areas for recommender systems (RSs). People-to-people RSs aim to exploit user's interests for suggesting relevant people to follow. However, traditional recommenders do not consider that people may share similar interests, but might have different feelings or opinions about them. In this paper, we propose a novel recommendation engine which relies on the identification of semantic attitudes, that is, sentiment, volume, and objectivity, extracted from user-generated content. In order to do this at large-scale on traditional social networks, we devise a three-dimensional matrix factorization, one for each attitude. Potential temporal alterations of users' attitudes are also taken into consideration in the factorization model. Extensive offline experiments on different real world datasets, reveal the benefits of the proposed approach compared with some state-of-the-art techniques.
机译:如今,社交网络的指数级发展正在为推荐系统(RS)创建新的应用领域。人对人RS旨在利用用户的兴趣来建议相关人员关注。但是,传统的推荐者并不认为人们可能拥有相似的兴趣,但是可能会对他们有不同的感受或看法。在本文中,我们提出了一种新颖的推荐引擎,该引擎依赖于从用户生成的内容中提取的语义态度(即情感,数量和客观性)的识别。为了在传统的社交网络上大规模地执行此操作,我们设计了一种三维矩阵分解法,每个因子分解一个。在分解模型中还考虑了用户态度的潜在时间变化。在不同的现实世界数据集上进行的广泛离线实验显示,与某些最新技术相比,该方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号