首页> 外文期刊>Future generation computer systems >Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data
【24h】

Achieving high performance and privacy-preserving query over encrypted multidimensional big metering data

机译:通过加密的多维大计量数据实现高性能和隐私保护的查询

获取原文
获取原文并翻译 | 示例

摘要

With the proliferation of smart grids, traditional utilities are struggling to handle the increasing amount of metering data. Outsourcing the metering data to heterogeneous distributed systems has the potential to provide efficient data access and processing. In an untrusted heterogeneous distributed system environment, employing data encryption prior to outsourcing can be an effective way to preserve user privacy. However, how to efficiently query encrypted multidimensional metering data stored in an untrusted heterogeneous distributed system environment remains a research challenge. In this paper, we propose a high performance and privacy-preserving query (P2Q) scheme over encrypted multidimensional big metering data to address this challenge. In the proposed scheme, encrypted metering data are stored in the server of an untrusted heterogeneous distributed system environment. A Locality Sensitive Hashing (LSH) based similarity search approach is then used to realize the similarity query. To demonstrate utility of the proposed LSH-based search approach, we implement a prototype using MapReduce for the Hadoop distributed environment. More specifically, for a given query, the proxy server will return K top similar data object identifiers. An enhanced Ciphertext-Policy Attribute-based Encryption (CP-ABE) policy is then used to control access to the search results. Therefore, only the requester with an authorized query attribute can obtain the correct secret keys to retrieve the metering data. We then prove that the P2Q scheme achieves data confidentiality and preserves the data owner's privacy in a semi-trusted cloud. In addition, our evaluations demonstrate that the P2Q scheme can significantly reduce response time and provide high search efficiency without compromising on search quality (i.e. suitable for multidimensional big data search in heterogeneous distributed system, such as cloud storage system).
机译:随着智能电网的激增,传统的公用事业部门正努力处理越来越多的计量数据。将计量数据外包给异构分布式系统有可能提供有效的数据访问和处理。在不受信任的异构分布式系统环境中,在外包之前采用数据加密可能是保护用户隐私的有效方法。然而,如何有效地查询存储在不受信任的异构分布式系统环境中的加密多维计量数据仍然是研究的挑战。在本文中,我们针对加密的多维大计量数据提出了一种高性能和隐私保护的查询(P2Q)方案,以解决这一挑战。在提出的方案中,加密的计量数据存储在不可信的异构分布式系统环境的服务器中。然后使用基于局部敏感哈希(LSH)的相似性搜索方法来实现相似性查询。为了演示所提出的基于LSH的搜索方法的实用性,我们针对Hadoop分布式环境使用MapReduce实现了一个原型。更具体地说,对于给定的查询,代理服务器将返回K个最相似的数据对象标识符。然后,使用增强的基于密文策略的基于属性的加密(CP-ABE)策略来控制对搜索结果的访问。因此,只有具有授权查询属性的请求者才能获取正确的密钥以检索计量数据。然后,我们证明P2Q方案实现了数据机密性,并在半信任的云中保留了数据所有者的隐私。此外,我们的评估表明P2Q方案可以显着减少响应时间并提供高搜索效率,而不会影响搜索质量(即适用于异构分布式系统(例如云存储系统)中的多维大数据搜索)。

著录项

  • 来源
    《Future generation computer systems》 |2018年第1期|392-401|共10页
  • 作者单位

    State Key Laboratory of High Performance Computing and School of Computer, National University of Defense Technology, Changsha, Hunan 410073, China;

    School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore;

    Department of Information Systems and Cyber Security, University of Texas at San Antonio, USA,School of Information Technology and Mathematical Sciences, University of South Australia, Australia,School of Computing, China University of Geosciences, Wuhan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smart grid; High performance; Privacy preservation; Similarity query; Multidimensional big metering data;

    机译:智能电网;高性能;隐私保护;相似度查询;多维大计量数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号