首页> 外文期刊>Future generation computer systems >An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach
【24h】

An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach

机译:基于服务的云应用程序的自主资源供应方法:混合方法

获取原文
获取原文并翻译 | 示例

摘要

In cloud computing environment, resources can be dynamically provisioned on deman for cloud services The amount of the resources to be provisioned is determined during runtime according to the workload changes. Deciding the right amount of resources required to run the cloud services is not trivial, and it depends on the current workload of the cloud services. Therefore, it is necessary to predict the future demands to automatically provision resources in order to deal with fluctuating demands of the cloud services. In this paper, we propose a hybrid resource provisioning approach for cloud services that is based on a combination of the concept of the autonomic computing and the reinforcement learning (RL). Also, we present a framework for autonomic resource provisioning which is inspired by the cloud layer model. Finally, we evaluate the effectiveness of our approach under two real world workload traces. The experimental results show that the proposed approach reduces the total cost by up to 50%, and increases the resource utilization by up to 12% compared with the other approaches.
机译:在云计算环境中,可以按需为云服务动态配置资源。要配置的资源量是在运行时根据工作负载的变化确定的。确定运行云服务所需的正确资源数量并非易事,这取决于云服务的当前工作负载。因此,有必要预测自动配置资源的未来需求,以应对云服务不断变化的需求。在本文中,我们提出了一种基于自主计算和强化学习(RL)概念的云服务混合资源供应方法。此外,我们提出了一种受云层模型启发的自主资源供应框架。最后,我们在两种实际工作量跟踪下评估了我们方法的有效性。实验结果表明,与其他方法相比,该方法可将总成本降低多达50%,并将资源利用率提高多达12%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号