首页> 外文期刊>Fusion Engineering and Design >Computational modelling of the HyperVapotron cooling technique
【24h】

Computational modelling of the HyperVapotron cooling technique

机译:HyperVapotron冷却技术的计算模型

获取原文
获取原文并翻译 | 示例
       

摘要

Efficient heat transfer technologies are essential for magnetically confined fusion reactors; this applies to both the current generation of experimental reactors as well as future power plants. A number of High Heat Flux devices have therefore been developed specifically for this application. One of the most promising candidates is the HyperVapotron, a water cooled device which relies on internal fins and boiling heat transfer to maximise the heat transfer capability. Over the past 30 years, numerous variations of the HyperVapotron have been built and tested at fusion research centres around the globe resulting in devices that can now sustain heat fluxes in the region of 20-30 MW/m~2 in steady state. Until recently, there had been few attempts to model or understand the internal heat transfer mechanisms responsible for this exceptional performance with the result that design improvements have been traditionally sought experimentally which is both inefficient and costly. This paper presents the successful attempt to develop an engineering model of the HyperVapotron device using customisation of commercial Computational Fluid Dynamics software. To establish the most appropriate modelling choices, in-depth studies were performed examining the turbulence models (within the Reynolds Averaged Navier Stokes framework), near wall methods, grid resolution and boiling submodels. Comparing the CFD solutions with HyperVapotron experimental data suggests that a RANS-based, multiphase model is indeed capable of predicting performance over a wide range of geometries and boundary conditions if suitable sub-models are developed. Whilst a definitive set of design improvements is not defined here, it is expected that the methodologies and tools developed will enable designers of future High Heat Flux devices to perform significant virtual prototyping before embarking on the more costly build and test programmes.
机译:高效的传热技术对于磁约束聚变反应堆至关重要。这适用于当前的实验反应堆以及未来的发电厂。因此,已经专门为此应用开发了许多高热通量器件。 HyperVapotron是最有前途的候选人之一,这是一种水冷装置,它依靠内部散热片和沸腾的热传递来最大化热传递能力。在过去的30年中,HyperVapotron的多种变体已经在全球的聚变研究中心进行了制造和测试,从而使设备现在可以在稳定状态下维持20-30 MW / m〜2的热通量。直到最近,很少有人尝试对导致这种出色性能的内部传热机制进行建模或理解,结果传统上一直在实验上寻求改进设计,这既效率低下又昂贵。本文介绍了使用商业化计算流体动力学软件定制开发HyperVapotron设备工程模型的成功尝试。为了建立最合适的模型选择,进行了深入研究,研究了湍流模型(在雷诺平均Navier Stokes框架内),近壁方法,网格分辨率和沸腾子模型。将CFD解决方案与HyperVapotron实验数据进行比较表明,如果开发了合适​​的子模型,则基于RANS的多相模型确实能够在各种几何形状和边界条件下预测性能。尽管此处未定义一组确定的设计改进,但可以预期,所开发的方法和工具将使未来的High Heat Flux器件的设计人员能够在着手进行更昂贵的构建和测试程序之前,进行大量的虚拟原型设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号