首页> 外文期刊>Fusion Engineering and Design >Neutronics analysis of the power flattening and minor actinides burning in a thorium-based fusion-fission hybrid reactor blanket
【24h】

Neutronics analysis of the power flattening and minor actinides burning in a thorium-based fusion-fission hybrid reactor blanket

机译:tronic基聚变裂变混合反应堆毯中功率展平和次act系元素燃烧的中子学分析

获取原文
获取原文并翻译 | 示例
       

摘要

A neutronics analysts has been performed for a thorium fusion breeder with a special task of burning minor actinide ~(237)Np,~(241)Am,~(243)Am, and ~(244)Cm, and production of ~(233)U for the future PWR application. Under a first wall fusion neutron wall loading of 0.1 MW/m~2 by a plant factor of 100%, preliminary neutronics calculations have been performed using the one-dimensional transport and burnup calculation code BISONC and the Monte Carlo transport code MCNP. To obtain a quasi-constant nuclear heat production density, 11 fuel rods containing the mixture of ThO_2 and minor actinides are placed in a radial direction in the fissile zone where ThO_2 is mixed with variable amounts of minor actinides. Calculation results show that the tritium breeding ratio is greater than 1.05 for both investigated Cases A and B, and the hybrid reactor is self-sufficient in the tritium required for the (DT) fusion driver in those models during the operation period. The blanket energy multiplication factor M, varies between 13.8 and 29.6 depending on the fuel types at the end of the operation period. The peak-to-average fission power density ratio (Γ) is less than 1.66 and 1.68 for both Cases A and B, respectively during the operation time. After 720 days of plant operation, the accumulated ~(233)Uis 1277 and 1725 kg in the blanket for the Cases A and B, respectively.
机译:已为for融合育种人员进行了中子学分析,其任务是燃烧次act系元素〜(237)Np,〜(241)Am,〜(243)Am和〜(244)Cm,并产生〜(23​​3) )U用于将来的PWR应用。在第一个壁聚变中子的壁负荷为0.1 MW / m〜2,植物因子为100%的情况下,已经使用一维输运和燃耗计算代码BISONC和蒙特卡洛输运代码MCNP进行了初步中子学计算。为了获得准恒定的核热产生密度,将11块包含ThO_2和次act系元素混合物的燃料棒沿径向放置在裂变区中,在其中,ThO_2与各种数量的次variable系元素混合。计算结果表明,对于所研究的案例A和案例B,the的繁殖率均大于1.05,并且在运行期间,混合反应堆可满足(DT)聚变驱动器所需的self的需求。覆盖能量倍增系数M在运行周期结束时取决于燃料类型在13.8和29.6之间变化。在运行期间,情况A和情况B的峰均裂变功率密度比(Γ)分别小于1.66和1.68。工厂运行720天后,案例A和案例B的总覆盖量分别为(277)U 1277和1725 kg。

著录项

  • 来源
    《Fusion Engineering and Design》 |2012年第9期|p.1633-1638|共6页
  • 作者单位

    North China Electric Power University, School of Nuclear Science and Engineering, Beijing 102206, China;

    North China Electric Power University, School of Nuclear Science and Engineering, Beijing 102206, China;

    North China Electric Power University, School of Nuclear Science and Engineering, Beijing 102206, China;

    North China Electric Power University, School of Nuclear Science and Engineering, Beijing 102206, China;

    North China Electric Power University, School of Nuclear Science and Engineering, Beijing 102206, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    power flattening; minor actinides; thorium-based blanket; neutronics;

    机译:功率变平;次act系元素;or基毯子;中子学;
  • 入库时间 2022-08-18 00:39:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号