首页> 外文期刊>Fusion Engineering and Design >Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design
【24h】

Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

机译:评估高温,氦气冷却的真空容器和Vulcan托卡马克概念设计的第一道墙的可行性

获取原文
获取原文并翻译 | 示例
       

摘要

The Vulcan conceptual design (R = 1.2m, α - 0.3 m, B_0 = 7T), a compact, steady-state tokamak for plasma-material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10MWm~(-2) so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through ~1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and configurations to be tested with relative ease, providing a new approach to reactor-relevant PMI science.
机译:Vulcan的概念设计(R = 1.2m,α-0.3 m,B_0 = 7T),一种紧凑的,稳态的托卡马克,用于等离子体-材料相互作用(PMI)科学,必须集成一个能够以1000 K操作的真空容器复制与温度有关的物理化学,该化学将控制反应堆中的PMI。此外,Vulcan分流器必须能够处理高达10MWm〜(-2)的稳态热通量,以便可以在与反应堆相关的条件下进行集成材料测试。已经进行了概念设计范围研究,以评估实现这种配置所涉及的挑战。 Vulcan真空系统包括一个内部初级真空容器,该内部真空容器与外部次级真空容器通过10 cm的真空间隙进行热和机械隔离。热隔离使高温氦冷却的初级容器和水冷的次级容器之间的热传导最小化。机械隔离允许热膨胀,并允许垂直移出主容器以进行维护或更换。通过约1 m长的容器内管道可进入诊断用主容器,下部混合波导和氦冷却剂,以最大程度地降低温度梯度,并显示出与Vulcan中可用的端口空间相当。通过分析计算和有限元分析表明,隔离的主真空容器在机械上是可行的,并且对等离子体破坏具有鲁棒性。通过将现有的氦冷却技术与面向等离子体的部件的创新型机械附件(板式)相结合,可以实现第一壁和分流器的除热,以及为科学目的对分流器组件进行现场维护和更换的能力氦气冷却模块或独立螺栓连接的氦气喷射冲击冷却砖。真空容器和第一壁设计使得可以相对容易地测试各种潜在的PFC材料和配置,从而为与反应堆相关的PMI科学提供了新的方法。

著录项

  • 来源
    《Fusion Engineering and Design》 |2012年第3期|p.248-262|共15页
  • 作者单位

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA USA;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    vulcan; vacuum vessel; divertor; plasma-facing components; plasma-material interactions;

    机译:火神真空容器偏滤器等离子组件;等离子体材料相互作用;
  • 入库时间 2022-08-18 00:39:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号