首页> 外文期刊>Fusion Engineering and Design >Robust control of the current profile and plasma energy in EAST
【24h】

Robust control of the current profile and plasma energy in EAST

机译:稳定控制EAST中的电流分布和等离子能量

获取原文
获取原文并翻译 | 示例
       

摘要

Integrated control of the toroidal current density profile, or alternatively the q-profile, and plasma stored energy is essential to achieve advanced plasma scenarios characterized by high plasma confinement, magnetohydrodynamics stability, and noninductively driven plasma current. The q-profile evolution is closely related to the evolution of the poloidal magnetic flux profile, whose dynamics is modeled by a nonlinear partial differential equation (PDE) referred to as the magnetic-flux diffusion equation (MDE). The MDE prediction depends heavily on the chosen models for the electron temperature, plasma resistivity, and non-inductive current drives. To aid control synthesis, control-oriented models for these plasma quantities are necessary to make the problem tractable. However, a relatively large deviation between the predictions by these control-oriented models and experimental data is not uncommon. For this reason, the electron temperature, plasma resistivity, and noninductive current drives are modeled for control synthesis in this work as the product of an "uncertain" reference profile and a nonlinear function of the different auxiliary heating and current-drive (H&CD) source powers and the total plasma current. The uncertainties are quantified in such a way that the family of models arising from the modeling process is able to capture the q-profile and plasma stored energy dynamics from a typical EAST shot. A control-oriented nonlinear PDE model is developed by combining the MDE with the "uncertain" models for the electron temperature, plasma resistivity, and non-inductive current drives. This model is then rewritten into a control framework to design a controller that is robust against the modeled uncertainties. The resulting controller utilizes EAST's H&CD powers and total plasma current to regulate the q profile and plasma stored energy even when mismatches between modeled and actual dynamics are present. The effectiveness of the controller is demonstrated through nonlinear simulations.
机译:环形电流密度曲线(或q曲线)与等离子体存储能量的集成控制对于实现以高等离子体约束,磁流体力学稳定性和非感应驱动等离子体电流为特征的高级等离子体场景至关重要。 q剖面的演变与极向磁通剖面的演变密切相关,其动力学由称为磁通扩散方程(MDE)的非线性偏微分方程(PDE)建模。 MDE预测很大程度上取决于所选的电子温度,等离子体电阻率和非感应电流驱动模型。为了帮助控制综合,必须采用针对这些血浆量的面向控制的模型,以使问题易于解决。但是,这些面向控制的模型的预测与实验数据之间的相对较大偏差并不少见。因此,在此工作中,将电子温度,等离子体电阻率和非感应电流驱动建模为控制综合模型,作为“不确定”参考曲线和不同辅助加热和电流驱动(H&CD)源的非线性函数的乘积功率和总等离子体电流。不确定性的量化方式是:建模过程中产生的一系列模型能够从典型的EAST射中捕获q轮廓和等离子体存储的能量动态。通过将MDE与电子温度,等离子体电阻率和非感应电流驱动的“不确定”模型相结合,开发了一种面向控制的非线性PDE模型。然后将此模型重写为控制框架,以设计对建模的不确定性具有鲁棒性的控制器。最终的控制器利用EAST的H&CD功率和总等离子体电流来调节q分布和等离子体存储的能量,即使在模拟动力学与实际动力学之间存在不匹配时也是如此。通过非线性仿真证明了控制器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号