首页> 外文期刊>Fuel >Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture
【24h】

Effect of acoustically absorbing wall tubes on the near-limit detonation propagation behaviors in a methane-oxygen mixture

机译:吸声壁管对甲烷-氧气混合物中近极限爆轰传播行为的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Methane (CH4) is the main component of natural gas and produces less carbon dioxide for each unit of heat released and more heat per unit mass than other hydrocarbon fuels, and it is thus considered to be an environmental-friendly fuel. The explosion and detonation hazards associated with methane mixtures deserve special attention because of their potential safety hazards. Acoustically absorbing materials are effective in damping out the transverse wave of a detonation structure. A detonation could be attenuated or prohibited after passing over this material, but the failure mechanism of the detonation still needs further exploration. In this study, tubes made of an acoustically absorbing material (hole diameters of the wall are from 30 mu m to 300 mu m) are inserted in the smooth rigid wall tube to investigate the effect of the porous-walled material on the detonation propagation at the near-limit conditions. Porous-walled tubes with three different scales (L/D = 3.85, 7.69, and 15.38) are studied. Photodiodes and smoked foils are employed to simultaneously measure the local velocity of the combustion waves and record the cellular detonation structures, respectively. The results show that, for shorter porous-walled tubes, the prohibition effect of the absorbing material on the detonation propagation is only prominent at the critical and sub-critical conditions, but the material has a minor effect on the detonation propagation at the super-critical condition. In addition, the prohibition effect of the porous material on the detonation propagation becomes more evident with the increased length of the acoustically absorbing material. This outcome occurs because a transverse wave plays an important role in the propagation of a self-sustained detonation, as it is partially damped during the transmission of the detonation through the porous-walled tube; thus, extending the length of the porous-walled section results in increasing the losses of the incident and reflected shock waves due to a greater expansion and mass divergence into porous material. Therefore, the velocity of the combustion wave decreases faster in the downstream of the porous material with an increased length. On the other hand, the methane-oxygen mixture has a highly irregular cellular pattern and is characterized as an unstable mixture with a high degree of instability. The strong instability leads to an enhanced ability to generate new transverse waves in the far downstream, and therefore, at the super-critical condition (a relatively higher initial pressure), the instability partly compensates for the negative effect of the acoustically absorbing material on the detonation propagation.
机译:甲烷(CH4)是天然气的主要成分,与其他碳氢化合物燃料相比,释放出的每单位热量产生的二氧化碳更少,每单位质量产生的热量更多,因此被认为是环保燃料。与甲烷混合物有关的爆炸和爆炸危险由于其潜在的安全隐患而应引起特别注意。吸声材料有效地抑制了爆炸结构的横向波。爆炸通过后可以减弱或禁止爆炸,但爆炸的破坏机理仍需进一步探索。在这项研究中,将由吸声材料制成的管(壁的孔径为30微米至300微米)插入光滑的刚性壁管中,以研究多孔壁材料对爆轰传播的影响。接近极限的条件。研究了三种不同比例(L / D = 3.85、7.69和15.38)的多孔壁管。光电二极管和烟熏箔片分别用于同时测量燃烧波的局部速度并记录细胞的爆炸结构。结果表明,对于较短的多孔壁管,吸收材料对爆轰传播的抑制作用仅在临界和次临界条件下才突出,而在超临界条件下,材料对爆轰传播的影响较小。危急情况。另外,随着吸声材料长度的增加,多孔材料对爆炸传播的抑制作用变得更加明显。产生这种结果是因为横波在自持爆轰的传播中起着重要作用,因为在通过多孔壁管的爆轰传递过程中,横波会部分衰减。因此,由于更大的膨胀和质量向多孔材料中的扩散,延长多孔壁部分的长度会导致入射和反射冲击波的损失增加。因此,在增加长度的多孔材料的下游,燃烧波的速度下降得更快。另一方面,甲烷-氧气混合物具有高度不规则的蜂窝状图案,并被表征为具有高度不稳定性的不稳定混合物。强烈的不稳定性导致在更远的下游产生新的横向波的能力增强,因此,在超临界条件(相对较高的初始压力)下,该不稳定性部分补偿了吸声材料对扬声器的负面影响。爆轰传播。

著录项

  • 来源
    《Fuel》 |2019年第15期|975-983|共9页
  • 作者

    Zhang Bo; Liu Hong; Yan Bingjian;

  • 作者单位

    East China Univ Sci & Technol, Sch Resources & Environm Engn, Shanghai 200237, Peoples R China;

    Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Methane-oxygen; Detonation propagation; Acoustically absorbing wall; Transverse wave;

    机译:甲烷-氧气;爆轰传播;吸声壁;横波;
  • 入库时间 2022-08-18 04:07:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号