首页> 外文期刊>Foundations of computing and decision sciences >ADAPTIVE LEAST SQUARES ALGORITHMS FOR TWO DIMENSIONAL SYSTEM IDENTIFICATION AND FILTERING: A UNIFIED APPROACH
【24h】

ADAPTIVE LEAST SQUARES ALGORITHMS FOR TWO DIMENSIONAL SYSTEM IDENTIFICATION AND FILTERING: A UNIFIED APPROACH

机译:二维系统识别和滤波的自适应最小二乘算法:统一方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a unified approach is presented for adaptive Least Squares Two-Dimensional system identification and linear filtering. First, a unified deterministic Least Squares criterion is introduced, and subsequently utilized for the derivation of a general algorithmic framework for the adaptive Two-Dimensional system identification and filtering. Overdetermined, as well as underdetermined Least Squares Two-Dimensional adaptive algorithms are derived, from the proposed general adaptive scheme. In this way, known Two-Dimensional adaptive algorithms are interpreted as special cases of a general algorithmic form. Moreover, new adaptive algorithms are derived, following the proposed methodology.
机译:本文提出了一种用于自适应最小二乘二维系统识别和线性滤波的统一方法。首先,引入统一的确定性最小二乘准则,随后将其用于派生用于自适应二维系统识别和过滤的通用算法框架。从提出的通用自适应方案中得出了超定以及最小定的最小二乘二维自适应算法。以这种方式,已知的二维自适应算法被解释为一般算法形式的特殊情况。此外,遵循提出的方法,得出了新的自适应算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号