首页> 外文期刊>Foundations of computing and decision sciences >BAYESIAN-BASED METHODS FOR THE ESTIMATION OF THE UNKNOWN MODEL'S PARAMETERS IN THE CASE OF THE LOCALIZATION OF THE ATMOSPHERIC CONTAMINATION SOURCE
【24h】

BAYESIAN-BASED METHODS FOR THE ESTIMATION OF THE UNKNOWN MODEL'S PARAMETERS IN THE CASE OF THE LOCALIZATION OF THE ATMOSPHERIC CONTAMINATION SOURCE

机译:大气污染源定位下基于贝叶斯的未知模型参数估计方法

获取原文
获取原文并翻译 | 示例

摘要

In many areas of application it is important to estimate unknown model parameters in order to model precisely the underlying dynamics of a physical system. In this context the Bayesian approach is a powerful tool to combine observed data along with prior knowledge to gain a current (probabilistic) understanding of unknown model parameters. We have applied the methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) to the problem of the atmospheric contaminant source localization. The algorithm input data are the on-line arriving information about concentration of given substance registered by distributed sensor network. We have examined different version of the MCMC algorithms in effectiveness to estimate the probabilistic distributions of atmospheric release parameters. The results indicate the probability of a source to occur at a particular location with a particular release rate.
机译:在许多应用领域中,重要的是估算未知的模型参数,以便精确地建模物理系统的基础动力学。在这种情况下,贝叶斯方法是一种强大的工具,可以将观察到的数据与先验知识相结合,以获得对未知模型参数的当前(概率)理解。我们将结合贝叶斯推断和马尔可夫链蒙特卡洛(MCMC)的方法应用于大气污染物源定位问题。算法输入数据是有关分布式传感器网络记录的给定物质浓度的在线到达信息。我们已经研究了不同版本的MCMC算法的有效性,以估计大气释放参数的概率分布。结果表明源在特定位置以特定释放速率发生的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号