首页> 外文期刊>Foundations of computing and decision sciences >Aspects in Classification Learning - Review of Recent Developments in Learning Vector Quantization
【24h】

Aspects in Classification Learning - Review of Recent Developments in Learning Vector Quantization

机译:分类学习的各个方面-学习矢量量化的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Classification is one of the most frequent tasks in machine learning. However, the variety of classification tasks as well as classifier methods is huge. Thus the question is coming up: which classifier is suitable for a given problem or how can we utilize a certain classifier model for different tasks in classification learning. This paper focuses on learning vector quantization classifiers as one of the most intuitive prototype based classification models. Recent extensions and modifications of the basic learning vector quantization algorithm, which are proposed in the last years, are highlighted and also discussed in relation to particular classification task scenarios like imbalanced and/or incomplete data, prior data knowledge, classification guarantees or adaptive data metrics for optimal classification.
机译:分类是机器学习中最常见的任务之一。但是,分类任务以及分类器方法种类繁多。因此出现了一个问题:哪个分类器适合给定的问题,或者我们如何在分类学习中如何将某个分类器模型用于不同的任务。本文将重点放在学习矢量量化分类器上,这是最直观的基于原型的分类模型之一。重点介绍并讨论了最近几年对基本学习矢量量化算法的最新扩展和修改,并针对特定的分类任务场景进行了讨论,例如不平衡和/或不完整的数据,先验数据知识,分类保证或自适应数据指标以获得最佳分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号