首页> 外文期刊>Foundations of computing and decision sciences >Morgan-Voyce Polynomial Approach for Quaternionic Space Curves of Constant Width
【24h】

Morgan-Voyce Polynomial Approach for Quaternionic Space Curves of Constant Width

机译:恒大宽度季屈差空间曲线的摩根 - voyce多项式方法

获取原文
获取原文并翻译 | 示例

摘要

The curves of constant width are special curves used in engineering, architecture and technology. In the literature, these curves are considered according to different roofs in different spaces and some integral characterizations of these curves are obtained. However, in order to examine the geometric properties of curves of constant width, more than characterization is required. In this study, firstly differential equations characterizing quaternionic space curves of constant width are obtained. Then, the approximate solutions of the differential equations obtained are calculated by the Morgan-Voyce polynomial approach. The geometric properties of this curve type are examined with the help of these solutions.
机译:恒定宽度的曲线是工程,架构和技术中使用的特殊曲线。 在文献中,根据不同空间的不同屋顶考虑这些曲线,并且获得了这些曲线的一些整体特征。 然而,为了检查恒定宽度的曲线的几何特性,比表征多于表征。 在该研究中,获得了表征恒定宽度的四元天空空间曲线的第一微分方程。 然后,通过Morgan-Voyce多项式方法计算所获得的微分方程的近似解。 在这些解决方案的帮助下检查该曲线类型的几何特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号