首页> 外文期刊>Finite Elements in Analysis and Design >Numerical simulation of Stefan problem with ensuing melt flow through XFEM/level set method
【24h】

Numerical simulation of Stefan problem with ensuing melt flow through XFEM/level set method

机译:XFEM /能级集法确定熔体流动的斯蒂芬问题的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

This work focuses on investigating the application of the extended finite element method (XFEM) and level set method in describing the interplay between the thermal behaviour and ensuing melt flow during the liquid-solid phase transition process of pure material. The flow that happens in the melt is supposed to be induced either by the temperature gradient (buoyancy driven flow) or by the density gap between the two phases. The problem at hand is characterized by the free-moving phase interface as well as discontinuities therein. The free interface is captured implicitly by the level set method, while the discontinuities are dealt with by XFEM. Two sets of partial differential equations, i.e. temperature-based energy conservation equation supplemented by Stefan condition and Stokes equations with Boussinesq approximation, are solved by XFEM. The quantities to be determined including temperature, fluid velocity and pressure present different degrees of discontinuity at the interface. Accordingly, the corrected abs-enrichment scheme is applied to build the approximation function for the temperature, while the sign-enrichment scheme for the melt velocity and pressure. Constraints at the interface, such as interface temperature and melt velocity, are imposed by the penalty method. The accuracy of the numerical model is verified by three benchmark tests: flow past a circular cylinder, infinite corner solidification and tin melting front. The simulation results have a good agreement with the analytical solutions or those obtained by the conventional finite element method (FEM).
机译:这项工作的重点是研究扩展有限元方法(XFEM)和水平集方法在描述纯材料液固相变过程中热行为与随后的熔体流动之间的相互作用时的应用。熔体中发生的流动被认为是由温度梯度(浮力驱动的流动)或两相之间的密度差引起的。当前的问题的特征在于自由移动的相界面以及其中的不连续性。自由接口通过级别设置方法隐式捕获,而不连续性由XFEM处理。用XFEM求解了两组偏微分方程,即基于Stefan条件的基于温度的能量守恒方程和具有Boussinesq近似的Stokes方程。待确定的量(包括温度,流体速度和压力)在界面处呈现不同的不连续程度。因此,采用校正后的吸收富集方案来建立温度的近似函数,而使用符号富集方案来建立熔体速度和压力。惩罚方法对界面施加了约束,例如界面温度和熔体速度。数值模型的准确性通过三个基准测试得到验证:流过圆柱体,无限拐角凝固和锡熔化前沿。仿真结果与解析解或通过常规有限元方法(FEM)获得的解析解具有良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号