首页> 外文期刊>Finite Elements in Analysis and Design >Topology optimization of binary structures using Integer Linear Programming
【24h】

Topology optimization of binary structures using Integer Linear Programming

机译:使用整数线性规划的二元结构拓扑优化

获取原文
获取原文并翻译 | 示例
       

摘要

This work proposes an improved method for gradient-based topology optimization in a discrete setting of design variables. The method combines the features of BESO developed by Huang and Xie [1] and the discrete topology optimization method of Svanberg and Werme [2] to improve the effectiveness of binary variable optimization. Herein the objective and constraint functions are sequentially linearized using Taylor's first order approximation, similarly as carried out in [2]. Integer Linear Programming (ILP) is used to compute globally optimal solutions for these linear optimization problems, allowing the method to accommodate any type of constraints explicitly, without the need for any Lagrange multipliers or thresholds for sensitivities (like the modern BESO [1]), or heuristics (like the early ESO/BESO methods [3]). In the linearized problems, the constraint targets are relaxed so as to allow only small changes in topology during an update and to ensure the existence of feasible solutions for the ILP. This process of relaxing the constraints and updating the design variables by using ILP is repeated until convergence. The proposed method does not require any gradual refinement of mesh, unlike in [2] and the sensitivities every iteration are smoothened by using the mesh-independent BESO filter. Few examples of compliance minimization are shown to demonstrate that mathematical programming yields similar results as that of BESO for volume-constrained problems. Some examples of volume minimization subject to a compliance constraint are presented to demonstrate the effectiveness of the method in dealing with a non-volume constraint. Volume minimization with a compliance constraint in the case of design-dependent fluid pressure loading is also presented using the proposed method. An example is presented to show the effectiveness of the method in dealing with displacement constraints. The results signify that the method can be used for topology optimization problems involving non-volume constraints without the use of heuristics, Lagrange multipliers and hierarchical mesh refinement.
机译:这项工作提出了一种改进的方法,用于在离散的设计变量设置中进行基于梯度的拓扑优化。该方法结合了Huang和Xie [1]开发的BESO的特性以及Svanberg和Werme [2]的离散拓扑优化方法,以提高二元变量优化的有效性。在这里,目标和约束函数使用泰勒(Taylor)的一阶逼近顺序线性化,类似于在[2]中执行的那样。整数线性规划(ILP)用于为这些线性优化问题计算全局最优解,从而允许该方法显式适应任何类型的约束,而无需任何Lagrange乘数或敏感度阈值(如现代BESO [1]) ,或启发式(例如早期的ESO / BESO方法[3])。在线性化问题中,放宽了约束目标,以便在更新过程中仅允许拓扑结构的小变化,并确保存在针对ILP的可行解决方案。重复使用ILP放松约束和更新设计变量的过程,直到收敛为止。与[2]中的方法不同,所提出的方法不需要对网格进行任何逐步的细化,并且通过使用独立于网格的BESO滤波器可以使每次迭代的灵敏度变得平滑。很少有法规遵从性最小化的例子能够证明数学编程产生与BESO相似的结果,以解决数量受限的问题。给出了服从约束的最小化体积的一些例子,以证明该方法在处理非体积约束方面的有效性。使用所提出的方法还提出了在与设计有关的流体压力负载的情况下具有顺应性约束的体积最小化。给出了一个例子来说明该方法在处理位移约束方面的有效性。结果表明,该方法可用于涉及非体积约束的拓扑优化问题,而无需使用启发式,拉格朗日乘数和分层网格细化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号