首页> 外文期刊>Fatigue Fracture Mechanics >Failure Beneath Cannon Thermal Barrier Coatings by Hydrogen Cracking; Mechanisms and Modeling
【24h】

Failure Beneath Cannon Thermal Barrier Coatings by Hydrogen Cracking; Mechanisms and Modeling

机译:加农炮在热障涂层下的氢裂失效;机制与建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Army experience with hydrogen cracking failures of cannons is described, including extensive testing of high strength steel and nickel-iron base alloys to address the failures. Cracking of cannon pressure vessel steels just under bore thermal barrier coatings is now common, and can be explained by the combined action of hydrogen-bearing combustion gases and thermally induced tensile residual stresses. Above-yield transient thermal compression and resultant residual tension stresses beneath the coating are shown to give good predictions of crack arrays observed under the coatings. A similar array of hydrogen cracks in a prototype cannon has recently been explained by contact of combustion gases with uncoated high strength steel that has been yielded by mechanical compressive stresses, leading to residual tension and cracking. The use of nickel-plated hydrogen barrier coatings was shown to eliminate this type of cracking. Recent cannon experience provides a basis for a summary of mechanisms of hydrogen cracking beneath cannon barrier coatings. The near-bore transient temperature distributions due to cannon firing are calculated by finite difference calculations using temperature-dependent thermal and physical properties and validation by comparison with the known temperatures and the observed depths of microstructural damage. Solid mechanics calculations of transient thermal compressive stresses and resultant residual tensile stresses are made, taking account of temperature dependent coating properties and yielding of the steel substrate near the bore surface. Effects of coating material, coating thickness, and the temperature and duration of firing gases on the depth of thermal damage below the coating are investigated. Direct comparisons between observed and predicted thermal damage and hydrogen cracking are made for coating and firing conditions that correspond to modern cannon firing. This comparison suggests changes in cannon bore coatings to handle the more extreme thermal conditions in modern cannon firing, including thicker or more durable thermal barrier coatings to minimize thermal stresses in the steel substrate and different coating materials that can serve as hydrogen barrier coatings.
机译:描述了军方对加农炮氢裂解失败的经验,包括对高强度钢和镍铁基合金进行广泛测试以解决这些失败的经验。现在,大炮压力容器钢刚好在膛孔热障涂层下面开裂是很普遍的现象,可以用含氢燃烧气体和热引起的拉伸残余应力的共同作用来解释。示出了高于屈服的瞬时热压缩以及在涂层下方产生的残余残余应力,从而给出了在涂层下方观察到的裂纹阵列的良好预测。原型大炮中类似的氢裂纹阵列最近已通过燃烧气体与未涂层的高强度钢接触而得到解释,该未涂覆的高强度钢是由机械压缩应力产生的,从而导致残余张力和裂纹。已证明使用镀镍的氢阻隔涂层可以消除这种类型的裂纹。最近的加农炮经验为加农炮阻隔涂层下氢裂化机理的总结提供了基础。通过使用取决于温度的热和物理特性进行有限差分计算,并通过与已知温度和观察到的微结构破坏深度进行比较,通过有限差分计算来计算由于大炮发射而引起的近口径瞬态温度分布。考虑到随温度变化的涂层性能和靠近孔表面的钢基底的屈服,进行了瞬态热压应力和残余残余拉应力的固体力学计算。研究了涂层材料,涂层厚度以及燃烧气体的温度和持续时间对涂层下方热损伤深度的影响。在与现代大炮射击相对应的涂层和射击条件下,对观察到的和预测的热损伤与氢裂解进行了直接比较。这种比较表明,为了适应现代加农炮射击中更极端的热条件,大炮内胆涂层发生了变化,包括更厚或更耐用的热障涂层,以最大程度地减少钢质基材和可用作氢障涂层的不同涂层材料中的热应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号