首页> 外文期刊>Expert systems with applications >Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm
【24h】

Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm

机译:用机器学习算法检测诊断心心律失常的常见风险因素

获取原文
获取原文并翻译 | 示例

摘要

This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient's reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.
机译:本文旨在通过试图衡量可能与其诊断有关的特定因素的重要性,为心律失常患者进行准确和创新的客观框架。心脏心律失常(CA)是与不规则心跳相关的一组病症。预防CA是至关重要的,因为它们是世界各地的自然死亡最常见的原因。根据健康报告,仅在美国每年的4.5多名达赫患者死亡。为了诊断心脏病,患者报告的定性症状可能是有用的。然而,由于较低的准确性和假阳性案例,这种策略有时可能会失败。因此,在这项工作中,我们努力找到定量基础,以便更可靠,准确地诊断心律失常。本研究使用公开可用的模拟-III数据库,以获得来自十六岁的患者的大量临床监测数据,以至于重症监护单位(ICU)。在健康科学和技术(hest)群集上处理了数据库,以指定的时间帧(24hrs,12hrs和6hrs)过滤并组织成多级和单级,最后分为列车,验证和测试集各自的重量为0.7,0.2和0.1。我们使用随机森林分类器模型进行心性心律失常的诊断,并测量不同特征等呼吸速率,血压,钠,钾,钙等其他特征的重要性。比较普通的reledameter优化技术,如网格搜索和遗传算法,以找到森林中的最大数量和景深。该模型最佳地实现了接收器操作员曲线(AUC)得分为0.9787的区域,因此证实了几个先前建议的因素在心律失常诊断中的重要性。我们证实了索钠,钙,钾,呼吸速率和血压可以用于心律失常的早期诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号