首页> 外文期刊>Expert systems with applications >Adaptive sampling using self-paced learning for imbalanced cancer data pre-diagnosis
【24h】

Adaptive sampling using self-paced learning for imbalanced cancer data pre-diagnosis

机译:适应性采样,使用自花奏学习进行不平衡癌症数据预诊断

获取原文
获取原文并翻译 | 示例

摘要

The early diagnosis of cancer diseases is an indispensable part in the cancer research. It urges people to develop many new machine learning approaches to assist the diseases identification based on the gene expression data. However, the race occurrence of malignant tumors creates a challenge due to the potential over-fitting risk in the current model training. Typically, people use various sampling methods (e.g., random oversampling and undersampling) to address this challenge to provide a balanced data distribution. However, these methods might discard potentially useful samples. In this paper, we proposed an imbalanced sampling approach via self-paced learning (ISPL) to effectively select high-quality samples to improve the robustness. The experimental results showed that our proposed ISPL method increased the classification accuracy by approximately 16% compared with the average performance obtained by other sampling methods. In addition, the new method successfully selected some important genes for further investigation. (C) 2020 Elsevier Ltd. All rights reserved.
机译:癌症疾病的早期诊断是癌症研究中不可或缺的一部分。它敦促人们开发许多新的机器学习方法,以协助疾病的鉴定基于基因表达数据。然而,由于当前模型训练中的潜在过度拟合风险,恶性肿瘤的种族发生产生挑战。通常,人们使用各种采样方法(例如,随机过度采样和未采样)来解决这一挑战以提供平衡数据分布。但是,这些方法可能会丢弃可能有用的样本。在本文中,我们提出了一种通过自定节育学习(ISPL)的不平衡采样方法,以有效地选择高质量的样本来提高鲁棒性。实验结果表明,与其他采样方法获得的平均性能相比,我们所提出的ISPL方法将分类精度提高约16%。此外,新方法成功选择了一些重要的基因以进一步调查。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2020年第8期|113334.1-113334.8|共8页
  • 作者单位

    Natl Univ Def Technol Sci & Technol Informat Syst Engn Lab Changsha Hunan Peoples R China;

    Natl Univ Def Technol Sci & Technol Informat Syst Engn Lab Changsha Hunan Peoples R China;

    Natl Univ Def Technol Sci & Technol Informat Syst Engn Lab Changsha Hunan Peoples R China;

    Cent South Univ Xiangya Stomatol Hosp Changsha Hunan Peoples R China|Cent South Univ Sch Stomatol Changsha Hunan Peoples R China|Cent South Univ Hunan Key Lab Oral Hlth Res Changsha Hunan Peoples R China;

    Cent South Univ Xiangya Stomatol Hosp Changsha Hunan Peoples R China|Cent South Univ Sch Stomatol Changsha Hunan Peoples R China|Cent South Univ Hunan Key Lab Oral Hlth Res Changsha Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Imbalanced classification; Adaptive sampling; Cancer pre-diagnosis; Elastic-net regularization;

    机译:不平衡分类;自适应采样;癌症预诊断;弹性净正则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号