首页> 外文期刊>Expert systems with applications >Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
【24h】

Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection

机译:通过正弦余弦算法促进SALP群算法和破坏算子进行特征选择

获取原文
获取原文并翻译 | 示例

摘要

Features Selection (FS) plays an important role in enhancing the performance of machine learning techniques in terms of accuracy and response time. As FS is known to be an NP-hard problem, the aim of this paper is to introduce basically a new variant of Salp Swarm Optimizer (SSA) for FS (called ISSAFD (Improved Followers of Salp swarm Algorithm using Sine Cosine algorithm and Disrupt Operator), that updates the position of followers (F) in SSA using sinusoidal mathematical functions that were inspired from the Sine Cosine Algorithm (SCA). This enhancement helps to improve the exploration phase and to avoid stagnation in a local area. Moreover, the Disruption Operator (D-op) is applied for all solutions, in order to enhance the population diversity and to maintain the balance between exploration and exploitation processes. Two other variants of SSA are developed based on SCA called ISSALD (Improved Leaders of Salp swarm Algorithm using Sine Cosine algorithm and Disrupt Operator) and ISSAF (Improved Followers of Salp swarm Algorithm using Sine Cosine algorithm). The updating process in consists to update the leaders (L) position by SCA and applying (D-op), whereas in ISSAF, the D-op is omitted and the position of followers is updated by SCA. Experimental results are evaluated on twenty datasets where four of them represent high dimensionality with a small number of instances. The obtained results show a good performance of ISSAFD in terms of accuracy, sensitivity, specificity, and the number of selected features in comparison with other metaheuristics (MH). (C) 2019 Elsevier Ltd. All rights reserved.
机译:特征选择(FS)在提高准确性和响应时间方面提高机器学习技术的性能方面发挥着重要作用。由于FS被称为难以解决的问题,本文的目的是基本上介绍FS的SALP群优化器(SSA)的新变种​​(使用正弦余弦算法和破坏运算符改进SALP群算法的改进的SALP Swarm算法的追随者),使用从正弦余弦算法(SCA)的正弦数学函数更新SSA中的追随者(f)的位置。这种增强有助于改善勘探阶段并避免在当地的停滞。此外,破坏适用于所有解决方案的操作员(D-OP),以提高人口多样性,并保持勘探和剥削过程之间的平衡。SSA的另外两种变体是基于SCA所谓的SCA(使用的改进SALP Swarm算法使用正弦余弦算法和中断运算符)和使用正弦余弦算法的SALP群算法的SALAF(改进了追随者)。更新过程包括更新领导者(L)位置SCA和应用(D-OP),而在ISSAF中,省略D-OP,SCA更新粉丝的位置。实验结果在二十个数据集上进行评估,其中四个是具有少量实例的高维度。获得的结果表明,与准确性,敏感度,特异性以及与其他成形管(MH)相比的所选特征数量的良好表现。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号