机译:DSTP-RNN:用于长期和多变量时间序列预测的基于两阶段两阶段基于注意力的递归神经网络
China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr Key Lab Agr Informat Acquisit Technol Beijing 100083 Peoples R China|Beijing Engn & Technol Res Ctr Internet Things Ag Beijing 100083 Peoples R China;
China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr Key Lab Agr Informat Acquisit Technol Beijing 100083 Peoples R China|Beijing Engn & Technol Res Ctr Internet Things Ag Beijing 100083 Peoples R China|China Agr Univ Natl Innovat Ctr Digital Fishery Beijing 100083 Peoples R China;
Time series prediction; Spatio-temporal relationship; Attention mechanism; Dual-stage two-phase model; Deep attention network;
机译:基于双级关注的Conv-LSTM网络,用于时空相关性和多变量时间序列预测
机译:Tempel:通过基于关注的经常性神经网络的流感病毒的时间序列突变预测
机译:基于关注的复发性神经网络,用于准确短期和长期溶解氧预测
机译:基于双级关注的经常性神经网络,用于时间序列预测
机译:采用双阶段关注经常性神经网络预测的时间序列预测
机译:缺失值的多元时间序列的递归神经网络
机译:基于双阶段注意的时间序列递归神经网络 预测