首页> 外文期刊>Expert Systems with Application >DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction
【24h】

DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction

机译:DSTP-RNN:用于长期和多变量时间序列预测的基于两阶段两阶段基于注意力的递归神经网络

获取原文
获取原文并翻译 | 示例

摘要

Long-term prediction of multivariate time series is still an important but challenging problem. The key to solve this problem is capturing (1) the spatial correlations at the same time, (2) the spatio-temporal relationships at different times, and (3) long-term dependency of the temporal relationships between different series. Attention-based recurrent neural networks (RNN) can effectively represent and learn the dynamic spatio-temporal relationships between exogenous series and target series, but they only perform well in one-step time prediction and short-term time prediction. In this paper, inspired by human attention mechanism including the dual-stage two-phase (DSTP) model and the influence mechanism of target information and non-target information, we propose DSTP-based RNN (DSTP-RNN) and DSTP-RNN-II respectively for long-term time series prediction. Specifically, we first propose the DSTP-based structure to enhance the spatial correlations between exogenous series. The first phase produces violent but decentralized response weight, while the second phase leads to stationary and concentrated response weight. Then, we employ multiple attentions on target series to boost the long-term dependency. Finally, we study the performance of deep spatial attention mechanism and provide interpretation. Experimental results demonstrate that the present work can be successfully used to develop expert or intelligent systems for a wide range of applications, with state-of-the-art performances superior to nine baseline methods on four datasets in the fields of energy, finance, environment and medicine, respectively. Overall, the present work carries a significant value not merely in the domain of machine intelligence and deep learning, but also in the fields of many applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:多元时间序列的长期预测仍然是一个重要但具有挑战性的问题。解决此问题的关键在于捕获(1)同时的空间相关性;(2)在不同时间的时空关系;以及(3)不同序列之间时间关系的长期依赖性。基于注意力的递归神经网络(RNN)可以有效地表示和学习外源序列与目标序列之间的动态时空关系,但是它们仅在一步时间预测和短期时间预测中表现良好。在本文中,基于包括两阶段两阶段(DSTP)模型在内的人类注意力机制以及目标信息和非目标信息的影响机制,我们提出了基于DSTP的RNN(DSTP-RNN)和DSTP-RNN- II分别用于长期时间序列预测。具体来说,我们首先提出基于DSTP的结构,以增强外生序列之间的空间相关性。第一阶段产生剧烈但分散的响应权重,而第二阶段则产生稳定且集中的响应权重。然后,我们对目标系列进行了多次关注,以增强长期依赖性。最后,我们研究了深层空间注意机制的性能并提供了解释。实验结果表明,当前的工作可以成功地用于开发广泛应用的专家或智能系统,其最新性能优于能源,金融,环境领域四个数据集的九种基准方法和医学。总的来说,当前的工作不仅在机器智能和深度学习领域中,而且在许多应用领域中,都具有重要的价值。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2020年第4期|113082.1-113082.12|共12页
  • 作者单位

    China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr Key Lab Agr Informat Acquisit Technol Beijing 100083 Peoples R China|Beijing Engn & Technol Res Ctr Internet Things Ag Beijing 100083 Peoples R China;

    China Agr Univ Coll Informat & Elect Engn Beijing 100083 Peoples R China|Minist Agr Key Lab Agr Informat Acquisit Technol Beijing 100083 Peoples R China|Beijing Engn & Technol Res Ctr Internet Things Ag Beijing 100083 Peoples R China|China Agr Univ Natl Innovat Ctr Digital Fishery Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Time series prediction; Spatio-temporal relationship; Attention mechanism; Dual-stage two-phase model; Deep attention network;

    机译:时间序列预测;时空关系;注意机制;双阶段两阶段模型;深度关注网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号