首页> 外文期刊>Expert Systems with Application >A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks
【24h】

A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks

机译:基于禁忌搜索的多目标多产品供应链网络优化设计算法

获取原文
获取原文并翻译 | 示例

摘要

The optimal design of a supply chain network is a challenging problem, especially for large networks where there are multiple objectives. Such problems are usually formulated as mixed integer programs. Solving this type of network design problem takes a long time using exact algorithms and for large-scale problems it is not even possible. This has given rise to the use of meta-heuristic techniques. In this paper, an effective tabu search algorithm for solving multi-product, multi-objective, multi-stage supply chain design problems is proposed. The desirable characteristics of the algorithm are developed, coded and tested. The results of the developed algorithm are compared with the results obtained by an improved augmented epsilon-constraint algorithm embedded in the General Algebraic Modeling System (GAMS) software for small-scale, medium-scale, and large-scale instances of multi-objective supply chain problems. Experimental results have shown that the developed algorithm is capable of obtaining high quality solutions within a short computation time, in addition to performing well in other measures such as solution diversity. (C) 2019 Published by Elsevier Ltd.
机译:供应链网络的优化设计是一个具有挑战性的问题,特别是对于具有多个目标的大型网络而言。这些问题通常被表述为混合整数程序。使用精确的算法来解决此类网络设计问题需要花费很长时间,而对于大规模问题,甚至是不可能的。这引起了元启发式技术的使用。本文提出了一种有效的禁忌搜索算法,用于解决多产品,多目标,多阶段的供应链设计问题。该算法的理想特性得到了开发,编码和测试。将开发的算法的结果与嵌入在通用代数建模系统(GAMS)软件中的改进的增强的epsilon约束算法获得的结果进行比较,该算法适用于多目标供应的小型,中型和大型实例连锁问题。实验结果表明,除了在解决方案多样性等其他指标方面表现出色之外,该算法还可以在较短的计算时间内获得高质量的解决方案。 (C)2019由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号