首页> 外文期刊>Expert Systems with Application >Ranking resumes automatically using only resumes: A method free of job offers
【24h】

Ranking resumes automatically using only resumes: A method free of job offers

机译:仅使用简历自动对简历排名:一种没有工作机会的方法

获取原文
获取原文并翻译 | 示例

摘要

With the success of the electronic recruitment, now it is easier to find a job offer and apply for it. However, due to this same success, nowadays, human resource managers tend to receive high volumes of applications for each job offer. These applications turn into large quantities of documents, known as resumes or curricula vitae, that need to be processed quickly and correctly. To reduce the time necessary to process the resumes, human resource managers have been working with the scientific community to create systems that automate their ranking. Until today, most of these systems are based on the comparison of job offers and resumes. Nevertheless, this comparison is impossible to do in data sets where job offers are no longer available, as it happens in this work. We present two methods to rank resumes that do not use job offers or any semantic resource, unlike existing state-of-the-art systems. The methods are based on what we call Inter-R sum Proximity, which is the lexical similarity between only resumes sent by candidates in response to the same job offer. Besides, we propose the use of Relevance Feedback, at general and lexical levels to improve the ranking of resumes. Relevance Feedback is applied using techniques based on similarity coefficients and vocabulary scoring. All the methods have been tested on a large corpus of 171 real selection processes, which correspond to more than 14,000 resumes. The developed methods can rank correctly, in average, 93% of the resumes sent to each job posting. The outcomes presented here show that it is not necessary to use job offers or semantic resources to provide high quality results. Furthermore, we observed that resumes have particular characteristics that as ensemble, work as a facial composite and provide more information about the job posting than the job offer. This certainly will change how systems analyze and rank resumes. (C) 2019 Elsevier Ltd. All rights reserved.
机译:随着电子招聘的成功,现在更容易找到工作并申请。但是,由于同样的成功,如今,人力资源经理倾向于为每份工作提供大量的应用程序。这些申请变成了大量需要快速,正确处理的文档,称为简历或履历。为了减少处理简历所需的时间,人力资源经理一直在与科学界合作创建自动排名的系统。直到今天,这些系统中的大多数都是基于工作机会和简历的比较。但是,这种比较不可能在工作机会不再可用的数据集中进行,因为它发生在这项工作中。与现有的最新系统不同,我们提供了两种不使用工作机会或任何语义资源的简历排名方法。这些方法基于我们所说的Inter-R总和(Inter-R sum Proximity),这是候选人响应同一工作机会而仅发送的简历之间的词汇相似性。此外,我们建议在一般和词汇层面上使用“相关反馈”来提高简历的排名。相关反馈是使用基于相似系数和词汇评分的技术来应用的。所有方法已在171个真实选择过程的大型语料库中进行了测试,这些过程对应14,000多个简历。所开发的方法平均可以正确地排名发送到每个职位发布的简历的93%。这里呈现的结果表明,没有必要使用工作机会或语义资源来提供高质量的结果。此外,我们观察到,简历具有特殊的特征,即合奏,可作为面部组合使用,并且比职位空缺提供更多有关职位发布的信息。这肯定会改变系统分析和排序简历的方式。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号