首页> 外文期刊>Expert Systems with Application >Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation
【24h】

Extreme learning machine optimized by whale optimization algorithm using insulated gate bipolar transistor module aging degree evaluation

机译:鲸鱼优化算法优化的极限学习机,使用绝缘栅双极晶体管模块老化度评估

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the aging evaluation of Insulated gate bipolar transistor (IGBT) modules to ensure their stability during operation. An aging degree evaluation model is proposed based on whale optimization algorithm optimized extreme learning machine (WOA-ELM) algorithm. This study is mainly concentrated on two aspects. One is to use WOA to optimize the input weights and hidden layer biases of ELM to improve its prediction performance. This study tested the performance of WOA-ELM on several benchmark datasets. The results show that the prediction performance of WOA-ELM is better than ELM, genetic algorithm optimized ELM, cuckoo search optimized ELM, and dandelion algorithm optimized ELM. The other is to measure the electrical and thermal characteristic data of IGBT module under different aging conditions by accelerated aging test. Based on the analysis of the experimental data under different aging degrees, a method for evaluating the aging degree of IGBT modules based on WOA-ELM is proposed. Simulation results based on experimental data show that WOA-ELM still has better accuracy and generalization performance than others. In summary, the WOA-ELM algorithm is applicable to the aging evaluation method of IGBT modules proposed in this study which has good practical value. (C) 2019 Elsevier Ltd. All rights reserved.
机译:这项研究的重点是绝缘栅双极晶体管(IGBT)模块的老化评估,以确保其在运行期间的稳定性。基于鲸鱼优化算法优化极限学习机(WOA-ELM)算法,提出了一种老化度评估模型。这项研究主要集中在两个方面。一种方法是使用WOA优化ELM的输入权重和隐藏层偏差以提高其预测性能。这项研究在几个基准数据集上测试了WOA-ELM的性能。结果表明,WOA-ELM的预测性能优于ELM,遗传算法优化的ELM,布谷鸟搜索优化的ELM和蒲公英算法优化的ELM。另一种是通过加速老化测试来测量不同老化条件下IGBT模块的电气和热特性数据。在对不同老化程度的实验数据进行分析的基础上,提出了一种基于WOA-ELM的IGBT模块老化程度评估方法。基于实验数据的仿真结果表明,WOA-ELM仍具有比其他方法更好的准确性和泛化性能。综上所述,WOA-ELM算法适用于本研究提出的IGBT模块的老化评估方法,具有很好的实用价值。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第8期|58-67|共10页
  • 作者单位

    Hebei Univ Technol, Sch Elect Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China|Hebei Univ Technol, Sch Elect Engn, Key Lab Electromagnet Field & Elect Apparatus Rel, Tianjin 300130, Peoples R China;

    Hebei Univ Technol, Sch Elect Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China|Hebei Univ Technol, Sch Elect Engn, Key Lab Electromagnet Field & Elect Apparatus Rel, Tianjin 300130, Peoples R China;

    Asia Univ, Inst Innovat & Circular Econ, Suwon, South Korea|China Med Univ, Dept Med Res, Taichung, Taiwan;

    Hebei Univ Technol, Sch Elect Engn, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China|Hebei Univ Technol, Sch Elect Engn, Key Lab Electromagnet Field & Elect Apparatus Rel, Tianjin 300130, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Insulated gate bipolar transistor module; Aging degree evaluation; Extreme learning machine; Whale optimization algorithm;

    机译:绝缘栅双极晶体管模块老化程度评估极限学习机鲸鱼优化算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号