首页> 外文期刊>Expert systems with applications >Forecasting financial condition of Chinese listed companies based on support vector machine
【24h】

Forecasting financial condition of Chinese listed companies based on support vector machine

机译:基于支持向量机的中国上市公司财务状况预测

获取原文
获取原文并翻译 | 示例

摘要

Due to the radical changing and specialty of Chinese capital market, it is challenging to develop a powerful financial distress prediction model. In this paper, we first analyzed the feasibility of Chinese special-treated companies as distressed sample by using statistical methods. Then we developed a prediction model based on support vector machines (SVM) for an unmatched sample of Chinese high-tech manufacture companies. The grid-search technique using 10-fold cross-validation is used to find out the best parameter value of kernel function of SVM. The experiment results show that the proposed SVM model outperforms conventional statistical methods and back-propagation neural network. In general, SVM provides a robust model with high prediction accuracy for forecasting financial distress of Chinese listed companies. It is also suggested that Chinese special-treated event adopted as cut-off line has some effect on the prediction accuracy of the models.
机译:由于中国资本市场的急剧变化和特殊性,开发强大的财务危机预测模型具有挑战性。在本文中,我们首先使用统计方法分析了中国特殊对待公司作为不良样本的可行性。然后,我们基于支持向量机(SVM)为中国高科技制造企业的无与伦比的样本开发了预测模型。利用十倍交叉验证的网格搜索技术,找出支持向量机内核功能的最佳参数值。实验结果表明,所提出的支持向量机模型优于传统的统计方法和反向传播神经网络。总的来说,支持向量机为预测中国上市公司的财务困境提供了一个具有高预测精度的稳健模型。还建议采用中国特殊事件作为临界线对模型的预测准确性有一定影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号