首页> 外文期刊>Expert systems with applications >Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks
【24h】

Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks

机译:比较四种破产预测模型:Logit,二次区间logit,神经网络和模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

Bankruptcy prediction is one of the major business classification problems. In this paper, we use four different techniques (1) logit model, (2) quadratic interval logit model, (3) backpropagation multi-layer per-ceptron (i.e., MLP), and (4) radial basis function network (i.e., RBFN) to predict bankrupt and non-bankrupt firms in England. The average hit ratio of four methods range from 91.15% to 77.05%. The original classification accuracy and the validation test results indicate that RBFN outperforms the other models.
机译:破产预测是主要的业务分类问题之一。在本文中,我们使用了四种不同的技术:(1)logit模型,(2)二次区间logit模型,(3)反向传播多层每个感知器(即MLP)和(4)径向基函数网络(即RBFN)来预测英格兰的破产和非破产公司。四种方法的平均命中率在91.15%至77.05%之间。原始分类准确性和验证测试结果表明,RBFN优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号