首页> 外文期刊>Expert systems with applications >An efficient approach for building customer profiles from business data
【24h】

An efficient approach for building customer profiles from business data

机译:从业务数据构建客户资料的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Data mining (DM) is a new emerging discipline that aims at extracting knowledge from data using several techniques. DM proved to be useful in business where transactional data turned out to be a mine of information about customer purchase habits. Therefore developing customer models (called also profiles in the literature) is an important step for targeted marketing. In this paper, we develop an approach for customer profiling composed of three steps. In the first step, we cluster data with an FCM-based algorithm in order to extract "natural" groups of customers. An important feature of our algorithm is that it provides a reliable estimate of the real number of distinct clusters in the data set using the partition entropy as a validity measure. In the second step, we reduce the number of attributes for each computed group of customers by selecting only the "most important" ones for that group. We use the information entropy to quantify the importance of an attribute. Consequently, and a result of this second step, we obtain a set of groups each described by a distinct set of attributes (or characteristics). In the third and final step of our model, we build a set of customer profiles each modeled by a backpropagation neural network and trained with the data in the corresponding group of customers. Experimental results on synthetic and large real-world data sets reveal a very satisfactory performance of our approach.
机译:数据挖掘(DM)是一门新兴的学科,旨在使用多种技术从数据中提取知识。事实证明,DM在事务数据被证明是有关客户购买习惯信息的业务中非常有用。因此,开发客户模型(在文献中也称为概要文件)是针对性营销的重要一步。在本文中,我们开发了一种由三个步骤组成的客户分析方法。第一步,我们使用基于FCM的算法对数据进行聚类,以提取“自然”的客户群。我们算法的一个重要特征是,它使用分区熵作为有效性度量来提供数据集中不同簇的真实数量的可靠估计。在第二步中,我们通过仅为该组客户选择“最重要”的属性来减少该属性的数量。我们使用信息熵来量化属性的重要性。因此,作为第二步的结果,我们获得了一组组,每个组由一组不同的属性(或特征)描述。在模型的第三步(也是最后一步)中,我们建立了一组客户档案,每个客户档案都通过反向传播神经网络进行建模,并使用相应客户群中的数据进行了训练。综合和大型现实数据集的实验结果表明,我们的方法具有非常令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号