首页> 外文期刊>Expert Systems with Application >Finger-vein pattern identification using SVM and neural network technique
【24h】

Finger-vein pattern identification using SVM and neural network technique

机译:基于支持向量机和神经网络技术的指静脉模式识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a support vector machine (SVM) technique for finger-vein pattern identification in a personal identification system. Finger-vein pattern identification is one of the most secure and convenient techniques for personal identification. In the proposed system, the finger-vein pattern is captured by infrared LED and a CCD camera because the vein pattern is not easily observed in visible light. The proposed verification system consists of image pre-processing and pattern classification. In the work, principal component analysis (PCA) and linear discriminant analysis (LDA) are applied to the image pre-processing as dimension reduction and feature extraction. For pattern classification, this system used an SVM and adaptive neuro-fuzzy inference system (ANFIS). The PCA method is used to remove noise residing in the discarded dimensions and retain the main feature by LDA. The features are then used in pattern classification and identification. The accuracy of classification using SVM is 98% and only takes 0.015 s. The result shows a superior performance to the artificial neural network of ANFIS in the proposed system.
机译:本文提出了一种用于个人识别系统中手指静脉图案识别的支持向量机(SVM)技术。指静脉图案识别是用于个人识别的最安全和便捷的技术之一。在所提出的系统中,由于在可见光中不容易观察到静脉图案,因此通过红外LED和CCD相机捕获了手指静脉图案。所提出的验证系统包括图像预处理和图案分类。在工作中,将主成分分析(PCA)和线性判别分析(LDA)应用于图像预处理,以进行降维和特征提取。对于模式分类,该系统使用了SVM和自适应神经模糊推理系统(ANFIS)。 PCA方法用于消除残留在废弃尺寸中的噪声,并通过LDA保留主要特征。然后将特征用于模式分类和识别。使用SVM进行分类的准确性为98%,仅需0.015 s。结果表明,该系统优于ANFIS的人工神经网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号