首页> 外文期刊>Expert Systems with Application >Short-term load forecasting using lifting scheme and ARIMA models
【24h】

Short-term load forecasting using lifting scheme and ARIMA models

机译:使用提升方案和ARIMA模型进行短期负荷预测

获取原文
获取原文并翻译 | 示例

摘要

Short-term load forecasting is achieved using a lifting scheme and autoregressive integrated moving average (ARIMA) models. The lifting scheme is a general and flexible approach for constructing bi-orthog-onal wavelets that are usually in the spatial domain. The lifting scheme is embedded into the ARIMA models to enhance forecasting accuracy. Based on wavelet multi-revolution analysis (MRA) results, the lifting scheme decomposes the original load series into different sub-series at different revolution levels, which display the different frequency characteristic of a load. The sub-series are then forecast using properly fitted ARIMA models. Finally, forecasting results at different levels are reconstructed to generate an original load prediction by the inverse lifting scheme. In this study, the Coeflet 12 wavelet is factored into lifting scheme steps. The proposed algorithm was tested by applying it to different practical load data types from the Taipower Company in 2007 for one-day-ahead load forecasting. Simulation results indicate that the forecasting performance of the proposed approach is superior to that of the back-propagation network (BPN) algorithm and traditional ARIMA models.
机译:使用提升方案和自回归综合移动平均(ARIMA)模型可实现短期负荷预测。提升方案是用于构造通常在空间域中的双正交小波的通用且灵活的方法。提升方案已嵌入ARIMA模型中,以提高预测准确性。基于小波多旋转分析(MRA)结果,该提升方案将原始载荷序列分解为不同转数的不同子序列,从而显示出不同的载荷频率特性。然后使用适当拟合的ARIMA模型预测子系列。最后,通过反向提升方案重建不同级别的预测结果,以生成原始负荷预测。在这项研究中,将Coeflet 12小波纳入提升方案步骤。将该算法应用于2007年台电公司的不同实际负荷数据类型进行了一天的提前负荷预测测试。仿真结果表明,该方法的预测性能优于反向传播网络(BPN)算法和传统的ARIMA模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号